Complexité (suite)

Philippe Lac

(philippe.lac@ac-clermont.fr)

Malika More

(malika.more@u-clermont1.fr)

IRFM Clermont-Ferrand

Stage Algorithmique

Année 2010-2011

Les nombres de Fibonacci

2 Les tris

3 Pour aller plus loin

Les nombres de Fibonacci

2 Les tris

3 Pour aller plus loin

Nombres de Fibonacci

Définition

- $F_0 = 1$
- $F_1 = 1$
- $F_n = F_{n-2} + F_{n-1}$ pour $n \ge 2$

Question

Quelle est la complexité des algorithmes de calcul des nombres de Fibonacci ?

```
Fonction Fib (n)

début

| si n < 2 alors
| retourner : 1
| fin
| retourner : Fib(n-1)+Fib(n-2)

fin
```

```
Fonction Fib (n)

début

| si n < 2 alors
| retourner : 1
| fin
| retourner : Fib(n - 1)+Fib(n - 2)

fin
```

Pendant le calcul de F_n

- a_n: nombre d'appels à la fonction Fib
- s_n : nombre d'additions

Exemples

- $a_0 = a_1 = 0$
- $a_2 = 2$
- $a_3 = 4$
- $s_0 = s_1 = 0$
- $s_2 = 1$
- $s_3 = 2$
- Etc.

Fonction Fib (n)

début

si n < 2 alors retourner : 1

fin

retourner : Fib(n-1)+Fib(n-2)

fin

Pendant le calcul de F_n

- a_n: nombre d'appels à la fonction Fib
- s_n : nombre d'additions

Relations de récurrence

$$a_n = 1 + a_{n-1} + 1 + a_{n-2}$$

$$s_n = s_{n-1} + 1 + s_{n-2}$$

Fonction Fib (n)

début

si n < 2 alors

retourner: 1

fin

retourner : Fib(n-1)+Fib(n-2)

fin

Suites auxiliaires

•
$$a'_n = a_n + 2$$

•
$$s'_n = s_n + 1$$

Des grands classiques

•
$$a_0' = a_1' = 2$$

•
$$a'_n = a'_{n-1} + a'_{n-2}$$

•
$$s_0' = s_1' = 1$$

•
$$s'_n = s'_{n-1} + s'_{n-2}$$

Fonction Fib (n)

début

si n < 2 alors retourner : 1

fin

retourner : Fib(n-1)+Fib(n-2)

fin

Suites auxiliaires

- $a'_n = a_n + 2$
- $s_n' = s_n + 1$

Dérécursivisation

- $a'_n = K_a \times \left(\frac{1+\sqrt{5}}{2}\right)^n$ pour $n \ge 2$
- $s'_n = K_s \times \left(\frac{1+\sqrt{5}}{2}\right)^n$ pour $n \ge 2$

```
Fonction Fib (n)
```

début

si n < 2 alors

retourner : 1

fin

retourner : Fib(n-1)+Fib(n-2)

fin

Pendant le calcul de F_n

- a_n: nombre d'appels à la fonction Fib
- s_n : nombre d'additions

Pour n > 2

•
$$a_n = K_a \times \left(\frac{1+\sqrt{5}}{2}\right)^n - 2$$

•
$$s_n = K_s \times \left(\frac{1+\sqrt{5}}{2}\right)^n - 1$$

```
Fonction Fib (n)
```

début

si *n* < 2 alors ⊢ retourner : 1

fin

retourner : Fib(n-1)+Fib(n-2)

fin

Hypothèses

- Chaque appel à Fib prend un temps constant
- Chaque addition prend un temps constant
- (À prendre avec précautions)

Temps de calcul de F_n

- Combinaison de a_n et s_n
- Du type $K \times \left(\frac{1+\sqrt{5}}{2}\right)^n$
- Croissance de type exponentiel par rapport à n

```
Fonction Fib (n)
début
| si n < 2 alors
| retourner : 1
fin
retourner : Fib(n-1)+Fib(n-2)
fin
```

Vérification expérimentale

 \longrightarrow Scilab

```
Fonction Fib (n)
début
   si n < 2 alors
      retourner: 1
   sinon
      Donner à x la valeur 1
      Donner à y la valeur 1
      for i de 2 à n do
          Donner à temp la valeur x + y
          Donner à x la valeur y
          Donner à y la valeur temp
      end
      retourner: y
   fin
```

```
Fonction Fib (n)
début
   si n < 2 alors
      retourner: 1
   sinon
      Donner à x la valeur 1
      Donner à v la valeur 1
      for i de 2 à n do
          Donner à temp la valeur x + y
          Donner à x la valeur y
          Donner à y la valeur temp
      end
      retourner: y
   fin
fin
```

Pendant le calcul de F_n

- Dans la boucle : 1 addition et 3 affectations
- \bullet n-1 passages dans la boucle
- Au total : n-1 additions et 3(n-1) affectations

Hypothèses

- Chaque affectation prend un temps constant
- Chaque addition prend un temps constant
- (À prendre avec précautions)

```
Fonction Fib (n)
début
   si n < 2 alors
      retourner: 1
   sinon
      Donner à x la valeur 1
      Donner à v la valeur 1
      for i de 2 à n do
          Donner à temp la valeur x + y
          Donner à x la valeur y
          Donner à y la valeur temp
      end
      retourner: y
   fin
fin
```

Pendant le calcul de F_n

- Dans la boucle : 1 addition et 3 affectations
- n − 1 passages dans la boucle
- Au total : n-1 additions et 3(n-1) affectations

Hypothèses

- Chaque affectation prend un temps constant
- Chaque addition prend un temps constant
- (À prendre avec précautions)

```
Fonction Fib (n)
début
   si n < 2 alors
      retourner: 1
   sinon
      Donner à x la valeur 1
      Donner à v la valeur 1
      for i de 2 à n do
          Donner à temp la valeur x + y
          Donner à x la valeur y
          Donner à y la valeur temp
      end
      retourner: y
   fin
fin
```

Pendant le calcul de F_n

- Dans la boucle : 1 addition et 3 affectations
- \bullet n-1 passages dans la boucle
- Au total : n-1 additions et 3(n-1) affectations

Temps de calcul de F_n

- Du type $K \times n$
- Croissance de type linéaire par rapport à n

Vérification expérimentale

→ Scilab

Intermède

Remarque

$$\left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right) \left(\begin{array}{c} a \\ b \end{array}\right) = \left(\begin{array}{c} b \\ a+b \end{array}\right)$$

Conséquence

$$\begin{pmatrix} F_{n-1} \\ F_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^{n-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ pour } n \ge 2$$

Multiplication matricielle

Nombre d'opérations élémentaires

$$\begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix} \begin{pmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \end{pmatrix}$$

$$= \begin{pmatrix} a_{1,1}b_{1,1} + a_{1,2}b_{2,1} & a_{1,1}b_{2,1} + a_{1,2}b_{2,2} \\ a_{2,1}b_{1,1} + a_{2,2}b_{2,1} & a_{2,1}b_{1,2} + a_{2,2}b_{2,2} \end{pmatrix}$$

---- 4 additions et 8 multiplications

```
Fonction Fib (n)
début
    si n < 2 alors
        retourner: 1
    sinon
        Donner à x la valeur \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}
        Donner à y la valeur \begin{pmatrix} 1 \\ 1 \end{pmatrix}
        Donner à x la valeur \exp(x, n-1)
        Donner à y la valeur xy
        Donner à z la valeur y[2, 1]
        retourner: z
    fin
fin
```

```
Fonction Fib (n)
début
    si n < 2 alors
        retourner: 1
    sinon
        Donner à x la valeur \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}
        Donner à y la valeur \begin{pmatrix} 1 \\ 1 \end{pmatrix}
        Donner à x la valeur ExpRap(x, n-1)
        Donner à y la valeur xy
        Donner à z la valeur y[2, 1]
        retourner: z
    fin
```

Pendant le calcul de F_n

- Calcul de ExpRap(x, n-1)
- Calcul de xy
- Affectations, etc.

Calcul de ExpRap(x, n-1)

Dans le pire des cas :

- |n-1| divisions
- 2|n-1| multiplications
- Attention : multiplications matricielles !

```
Fonction Fib (n)
début
    si n < 2 alors
        retourner: 1
    sinon
        Donner à x la valeur \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}
        Donner à y la valeur \begin{pmatrix} 1 \\ 1 \end{pmatrix}
        Donner à x la valeur ExpRap(x, n-1)
        Donner à y la valeur xy
        Donner à z la valeur y[2, 1]
        retourner: z
    fin
```

Pendant le calcul de F_n

- Calcul de ExpRap(x, n-1)
- Calcul de xy
- Affectations, etc.

Calcul de ExpRap(x, n-1)

Dans le pire des cas :

- |n-1| divisions
- 2|n − 1| multiplications
- Attention : multiplications matricielles !

```
Fonction Fib (n)
début
    si n < 2 alors
        retourner: 1
    sinon
        Donner à x la valeur \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}
        Donner à y la valeur \begin{pmatrix} 1 \\ 1 \end{pmatrix}
        Donner à x la valeur ExpRap(x, n-1)
        Donner à y la valeur xy
        Donner à z la valeur y[2, 1]
        retourner: z
    fin
```

Pendant le calcul de F_n

- Calcul de ExpRap(x, n-1)
- Calcul de xy
- Affectations, etc.

Calcul de ExpRap(x, n-1)

Dans le pire des cas :

- |n-1| divisions
- 8|n-1| additions
- 16|n − 1| multiplications

```
Fonction Fib (n)
début
    si n < 2 alors
        retourner: 1
    sinon
        Donner à x la valeur \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}
        Donner à y la valeur \begin{pmatrix} 1 \\ 1 \end{pmatrix}
        Donner à x la valeur ExpRap(x, n-1)
        Donner à y la valeur xy
        Donner à z la valeur y[2, 1]
        retourner: z
    fin
```

Pendant le calcul de F_n

- Calcul de ExpRap(x, n-1)
- Calcul de xy
- Affectations, etc.

Hypothèses

- Chaque affectation prend un temps constant
- Chaque opération arithmétique prend un temps constant
- (À prendre avec précautions)

```
Fonction Fib (n)
début
    si n < 2 alors
        retourner: 1
    sinon
        Donner à x la valeur \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}
        Donner à y la valeur \begin{pmatrix} 1 \\ 1 \end{pmatrix}
        Donner à x la valeur ExpRap(x, n-1)
        Donner à y la valeur xy
        Donner à z la valeur y[2, 1]
        retourner: z
    fin
```

Pendant le calcul de F_n

- Calcul de ExpRap(x, n-1)
- Calcul de xy
- Affectations, etc.

Temps de calcul de F_n

- Du type $K \times |n|$
- Croissance de type logarithmique par rapport à n

Vérification expérimentale

 \longrightarrow Scilab

Encore Fibonacci

```
Fonction Fib (n,adresse du tableau T)
début
   % F_n pas encore calculé % F_n
   si T[n] = 0 alors
      si n < 1 alors
         Donner à T[n] la valeur 1
      sinon
         Donner à T[n] la valeur Fib(n-1,
         adresse de T)+Fib(n-2, adresse
         de T
      fin
   fin
   % F_n contenu dans T[n] %
   retourner : T[n]
```

Encore Fibonacci

```
Fonction Fib (n,adresse du tableau T)
début
   % F_n pas encore calculé % F_n
   si T[n] = 0 alors
      si n < 1 alors
         Donner à T[n] la valeur 1
      sinon
         Donner à T[n] la valeur Fib(n-1,
         adresse de T)+Fib(n-2, adresse
         de T
      fin
   fin
   F_n contenu dans T[n]
   retourner : T[n]
```

- Un algorithme récursif qui évite de calculer plusieurs fois les mêmes valeurs en remplissant un tableau avec les valeurs déjà calculées
- Sa complexité est en O(n), puisque chaque case du tableau est remplie une seule fois

fin

Encore Fibonacci

```
Fonction Fib (n,adresse du tableau T)
début
   % F_n pas encore calculé % F_n
   si T[n] = 0 alors
      si n < 1 alors
         Donner à T[n] la valeur 1
      sinon
         Donner à T[n] la valeur Fib(n-1,
         adresse de T)+Fib(n-2, adresse
         de T
      fin
   fin
   F_n contenu dans T[n]
   retourner : T[n]
```

- Cet algorithme utilise et modifie un tableau créé en dehors de la fonction elle-même
 - Variable »globale »
 - Passage « par valeur » du paramètre T
- Cet algorithme restera théorique parce-qu'il semble que Scilab n'autorise pas le passage par adresse, ni la modification des variables globales...

Fibonacci avancé

Variante de la définition par récurrence

- $F_0 = 1$
- $F_1 = 1$
- Pour tout k > 1
 - $F_{2k} = F_k^2 + F_{k-1}^2$
 - $\bullet \ F_{2k+1} = (2F_{k-1} + F_k) \times F_k = (2F_{k+1} F_k) \times F_k$

Remarque

Preuve facile par récurrence

Toujours Fibonacci

```
Fonction Fib (n)
début
   si n < 1 alors
       Donner à F la valeur 1
   sinon
       si n impair alors
           Donner à k la valeur \frac{n-1}{2}
           Donner à F_1 la valeur \overline{Fib}(k-1)
           Donner à F_2 la valeur Fib(k)
           Donner à F la valeur (2F_1 + F_2) \times F_2
       sinon
           Donner à k la valeur \frac{n}{2}
           Donner à F_1 la valeur Fib(k-1)
           Donner à F_2 la valeur Fib(k)
           Donner à F la valeur F_1^2 + F_2^2
       fin
   fin
   retourner : F
fin
```

Toujours Fibonacci

```
Fonction Fib (n)
début
   si n < 1 alors
       Donner à F la valeur 1
   sinon
       si n impair alors
           Donner à k la valeur \frac{n-1}{2}
           Donner à F_1 la valeur \overline{Fib}(k-1)
           Donner à F_2 la valeur Fib(k)
           Donner à F la valeur (2F_1 + F_2) \times F_2
       sinon
           Donner à k la valeur \frac{n}{2}
           Donner à F_1 la valeur Fib(k-1)
           Donner à F_2 la valeur Fib(k)
           Donner à F la valeur F_1^2 + F_2^2
       fin
   fin
   retourner : F
fin
```

- Un algorithme récursif dans lequel la variable n est divisée par 2 à chaque appel récursif
- La hauteur de la pile des appels récursifs est donc en O(log n)
- Mais on calcule plusieurs fois les mêmes valeurs, comme dans l'algorithme récursif naïf
- L'ensemble des appels récursifs forme un arbres binaire, dont le nombre de nœuds est exponentiel en sa hauteur, i.e. en O(n)

Toujours Fibonacci

```
Fonction Fib (n)
début
   si n < 1 alors
       Donner à F la valeur 1
   sinon
       si n impair alors
           Donner à k la valeur \frac{n-1}{2}
           Donner à F_1 la valeur \overline{Fib}(k-1)
           Donner à F_2 la valeur Fib(k)
           Donner à F la valeur (2F_1 + F_2) \times F_2
       sinon
           Donner à k la valeur \frac{n}{2}
           Donner à F_1 la valeur Fib(k-1)
           Donner à F_2 la valeur Fib(k)
           Donner à F la valeur F_1^2 + F_2^2
       fin
   fin
   retourner : F
fin
```

- La complexité de cet algorithme est du même ordre que le nombre d'appels récursifs, donc en O(n)
- On peut se ramener à une complexité en O(log n) en utilisant un tableau global pour stocker les valeurs déjà calculées, comme précédemment

Fibonacci, un dernier

```
Fonction Fib2 (n)
début
   si n=0 alors
       Donner à u la valeur (0,1)
   sinon
       si n=1 alors
           Donner à u la valeur (1,1)
       sinon
           si n impair alors
              Donner à k la valeur \frac{n-1}{2}
               Donner à v la valeur Fib2(k)
               Donner à u la valeur
              (v[1]^2 + v[2]^2, (2v[1] + v[2]) \times v[2])
           sinon
               Donner à k la valeur \frac{n}{2}
               Donner à v la valeur Fib2(k)
               Donner à u la valeur
              ((2v[2] - v[1]) \times v[2], v[1]^2 + v[2]^2)
           fin
       fin
   fin
   retourner: u
fin
```

Fibonacci, un dernier

```
Fonction Fib2 (n)
début
   si n=0 alors
       Donner à u la valeur (0, 1)
   sinon
       si n=1 alors
           Donner à u la valeur (1,1)
       sinon
           si n impair alors
               Donner à k la valeur \frac{n-1}{2}
               Donner à v la valeur Fib2(k)
               Donner à u la valeur
              (v[1]^2 + v[2]^2, (2v[1] + v[2]) \times v[2])
           sinon
               Donner à k la valeur \frac{n}{2}
               Donner à v la valeur Fib2(k)
               Donner à u la valeur
              ((2v[2] - v[1]) \times v[2], v[1]^2 + v[2]^2)
           fin
       fin
   fin
   retourner : u
fin
```

- Un algorithme récursif dans lequel on calcule deux valeurs successives (F_{n-1}, F_n)
- La hauteur de la pile des appels récursifs est toujours en O(log n)
- Mais on ne calcule plus plusieurs fois les mêmes valeurs
- La complexité de cet algorithme est donc en O(log n)

Fibonacci, un dernier

```
Fonction Fib2 (n)
début
   si n=0 alors
       Donner à u la valeur (0, 1)
   sinon
       si n=1 alors
           Donner à u la valeur (1,1)
       sinon
           si n impair alors
               Donner à k la valeur \frac{n-1}{2}
               Donner à v la valeur Fib2(k)
               Donner à u la valeur
              (v[1]^2 + v[2]^2, (2v[1] + v[2]) \times v[2])
           sinon
               Donner à k la valeur \frac{n}{2}
               Donner à v la valeur Fib2(k)
               Donner à u la valeur
              ((2v[2] - v[1]) \times v[2], v[1]^2 + v[2]^2)
           fin
       fin
   fin
   retourner: u
fin
```

- On utilise les deux formules pour F_{2k+1} selon sa position dans le vecteur
- Pour récupérer F_n , on appelle Fib2(n)[2], pour $n \ge 0$
- C'est diablement compliqué...

- 1 Les nombres de Fibonacci
- 2 Les tris

3 Pour aller plus loin

fin

```
Algorithme 28: Tri par sélection
Entrée : Un tableau T de n entiers
Résultat : Le tableau T trié
début
   variables locales: Des entiers k, i, imax, temp
   pour k de n à 2 par pas de -1 faire
      % recherche de l'indice du maximum : %
      Donner à imax la valeur 1
      pour i de 2 à k par pas de 1 faire
         si T[imax] < T[i] alors
             Donner à imax la valeur i
         fin
      fin
      % échange : %
      Donner à temp la valeur T[k]
      Donner à T[k] la valeur T[imax]
      Donner à T[imax] la valeur temp
   fin
```

```
début
   pour k de n à 2 par pas de -1 faire
       Donner à imax la valeur 1
      pour i de 2 à k par pas de 1 faire
          si T[imax] < T[i] alors
             Donner à imax la valeur i
          fin
      fin
      Donner à temp la valeur T[k]
      Donner à T[k] la valeur T[imax]
      Donner à T[imax] la valeur temp
   fin
fin
```

fin

```
début
   pour k de n à 2 par pas de -1 faire
       Donner à imax la valeur 1
      pour i de 2 à k par pas de 1 faire
          si T[imax] < T[i] alors
             Donner à imax la valeur i
          fin
      fin
      Donner à temp la valeur T[k]
       Donner à T[k] la valeur T[imax]
      Donner à T[imax] la valeur temp
   fin
```

Pendant le tri

- Recherches de l'indice du maximum
- Échanges

Coût des échanges

- « pour k de n à 2 par pas de -1 »
 - n-1 échanges, c.-à-d. 3(n-1) affectations.

fin

```
début
   pour k de n à 2 par pas de -1 faire
       Donner à imax la valeur 1
      pour i de 2 à k par pas de 1 faire
          si T[imax] < T[i] alors
             Donner à imax la valeur i
          fin
      fin
      Donner à temp la valeur T[k]
       Donner à T[k] la valeur T[imax]
      Donner à T[imax] la valeur temp
   fin
```

Pendant le tri

- Recherches de l'indice du maximum
- Échanges

Coût des échanges

« pour k de n à 2 par pas de -1 »

• n-1 échanges, c.-à-d. 3(n-1) affectations.

```
début
```

fin

```
pour k de n à 2 par pas de -1 faire

| Donner à imax la valeur 1
| pour i de 2 à k par pas de 1 faire
| si T[imax] < T[i] alors
| Donner à imax la valeur i
| fin
| fin
| Donner à temp la valeur T[k]
| Donner à T[k] la valeur T[imax]
| Donner à T[imax] la valeur temp
```

Maximum parmi k éléments

- une affectation
- k − 1 passages dans la boucle sur i
- Dans la boucle sur i
 - une comparaison
 - au plus une affectation

Au total

- Au plus
 - k affectations
 - k 1 comparaisons

```
début
   pour k de n à 2 par pas de -1 faire
       Donner à imax la valeur 1
      pour i de 2 à k par pas de 1 faire
          si T[imax] < T[i] alors
            Donner à imax la valeur i
          fin
      fin
      Donner à temp la valeur T[k]
      Donner à T[k] la valeur T[imax]
      Donner à T[imax] la valeur temp
   fin
fin
```

Recherches de maximum

- « pour k de n à 2 par pas de -1 »
 - Affectations : au plus

$$n+(n-1)+\ldots+2$$

$$=\frac{n^2+n-2}{2}$$

Comparaisons :

$$(n-1) + (n-2) + \ldots + 1$$

= $\frac{n^2 - n}{2}$

```
début
```

```
pour k de n à 2 par pas de -1 faire
| Donner à imax la valeur 1
| pour i de 2 à k par pas de 1 faire
| si T[imax] < T[i] alors
| Donner à imax la valeur i
| fin
| fin
| Donner à temp la valeur T[k]
```

Donner à T[k] la valeur T[imax]

Donner à T[imax] la valeur temp

fin

fin

Pendant le tri

- Affectations : au plus $\frac{n^2+n-2}{2}+3(n-1)$
- Comparaisons : $\frac{n^2-n}{2}$

Hypothèses

- Chaque affectation prend un temps constant
- Chaque comparaison prend un temps constant
- (À prendre avec précautions)

```
début
po
```

```
pour k de n à 2 par pas de -1 faire
| Donner à imax la valeur 1
| pour i de 2 à k par pas de 1 faire
| si T[imax] < T[i] alors
| Donner à imax la valeur i
| fin
```

fin

Donner à temp la valeur T[k]Donner à T[k] la valeur T[imax]Donner à T[imax] la valeur temp

fin

fin

Pendant le tri

- Affectations : au plus $\frac{n^2+n-2}{2}+3(n-1)$
- Comparaisons : $\frac{n^2-n}{2}$

Temps de calcul

- La partie de degré 1 en n est négligeable devant la partie en n² quand n devient grand
- Du type $K \times n^2$
- Croissance de type quadratique par rapport à n
- On dit que l'algorithme est en $\mathcal{O}(n^2)$

Donner à T[i+1] la valeur v

∣ fin fin

```
Algorithme 29: Tri par insertion
Entrée : Un tableau T de n entiers
Résultat : Le tableau T trié
début
   variables locales : Des entiers k, i, v
   pour k de 2 à n par pas de 1 faire
      Donner à v la valeur T[k]
      Donner à i la valeur k-1
      % décalage des éléments pour l'insertion : %
      tant que i \ge 1 et v < T[i] faire
         Donner à T[i+1] la valeur T[i]
         Donner à i la valeur i – 1
      fin
      % insertion proprement dite : %
```

Les tris

0000000000

```
débutpour k de 2 à n par pas de 1 faireDonner à v la valeur T[k]Donner à i la valeur k-1tant que i \geq 1 et v < T[i] faireDonner à T[i+1] la valeur T[i]Donner à i la valeur i-1finDonner à T[i+1] la valeur vfin
```

```
débutpour k de 2 à n par pas de 1 faireDonner à v la valeur T[k]Donner à i la valeur k-1tant que i \geq 1 et v < T[i] faireDonner à T[i+1] la valeur T[i]Donner à i la valeur i-1finDonner à T[i+1] la valeur vfin
```

Pendant le tri

- Décalages
- Insertions

Coût des insertions

- « pour k de 2 à n par pas de 1 »
- n 1 affectations

fin

Tri par insertion

```
débutpour k de 2 à n par pas de 1 faireDonner à v la valeur T[k]Donner à i la valeur k-1tant que i \ge 1 et v < T[i] faireDonner à T[i+1] la valeur T[i]Donner à i la valeur i-1finDonner à T[i+1] la valeur v
```

Pendant le tri

- Décalages
- Insertions

Coût des insertions

- « pour k de 2 à n par pas de 1 »
 - n − 1 affectations

```
débutpour k de 2 à n par pas de 1 faireDonner à v la valeur T[k]Donner à i la valeur k-1tant que i \geq 1 et v < T[i] faireDonner à T[i+1] la valeur T[i]Donner à i la valeur i-1finDonner à T[i+1] la valeur vfin
```

Décalages parmi k éléments

- deux affectations
- au plus k 1 passages dans la boucle tant que
- Pour la boucle tant que
 - deux comparaisons
 - deux affectations

Au total

- Au plus
 - 2(k-1)+2=2k affectations
 - 2(k-1)+2=2k comparaisons

```
débutpour k de 2 à n par pas de 1 faireDonner à v la valeur T[k]Donner à i la valeur k-1tant que i \geq 1 et v < T[i] faireDonner à T[i+1] la valeur T[i]Donner à i la valeur i-1finDonner à T[i+1] la valeur vfin
```

Décalages

- « pour k de 2 à n par pas de 1 »
 - Affectations : au plus

$$2\times (2+3+\ldots +n)$$

$$= n^2 + n - 2$$

Comparaisons : au plus

$$n^2 + n - 2$$

début po

```
pour k de 2 à n par pas de 1 faire
```

Donner à v la valeur T[k]Donner à i la valeur k-1

tant que $i \ge 1$ et v < T[i] faire

Donner à T[i+1] la valeur T[i]Donner à i la valeur i-1

fin

Donner à T[i+1] la valeur v

fin

fin

Pendant le tri

- Affectations : au plus $n^2 + n 2 + (n 1)$
- Comparaisons : au plus $n^2 + n 2$

Hypothèses

- Chaque affectation prend un temps constant
- Chaque comparaison prend un temps constant
- (À prendre avec précautions)

début | pour k de 2 à n par pas de 1 faire | Donner à v la valeur T[k]| Donner à i la valeur k-1| tant que $i \ge 1$ et v < T[i] faire | Donner à T[i+1] la valeur T[i]

Donner à i la valeur i-1 fin Donner à T[i+1] la valeur v

fin

fin

Pendant le tri

- Affectations : au plus $n^2 + 2n 3$
- Comparaisons : au plus n² + n - 2

Temps de calcul

- La partie de degré 1 en n est négligeable devant la partie en n² quand n devient grand
- Du type $K \times n^2$
- Croissance de type quadratique par rapport à n
- On dit que l'algorithme est en O(n²)

```
Algorithme 30 : Tri à bulles
```

```
Entrée : Un tableau T de n entiers
```

Résultat : Le tableau T trié

début

```
variables locales : Des entiers k, i, temp
   % pour chaque passe : %
   pour k de n à 2 par pas de -1 faire
      % on fait remonter le plus grand : %
      pour i de 2 à k par pas de 1 faire
         si T[i] < T[i-1] alors
            % échange de T[i] et de T[i-1] : %
            Donner à temp la valeur T[i]
            Donner à T[i] la valeur T[i-1]
            Donner à T[i-1] la valeur temp
         fin
      fin
   fin
fin
```

```
début
   pour k de n à 2 par pas de -1 faire
      pour i de 2 à k par pas de 1 faire
          si T[i] < T[i-1] alors
             Donner à temp la valeur T[i]
             Donner à T[i] la valeur
             T[i-1]
             Donner à T[i-1] la valeur
             temp
          fin
      fin
   fin
fin
```

```
début
   pour k de n à 2 par pas de -1 faire
      pour i de 2 à k par pas de 1 faire
          si T[i] < T[i-1] alors
             Donner à temp la valeur T[i]
             Donner à T[i] la valeur
             T[i-1]
             Donner à T[i-1] la valeur
             temp
          fin
      fin
   fin
fin
```

Pendant le tri

Échanges

Coût d'un échange

trois affectations

```
début
   pour k de n à 2 par pas de -1 faire
      pour i de 2 à k par pas de 1 faire
          si T[i] < T[i-1] alors
             Donner à temp la valeur T[i]
             Donner à T[i] la valeur
             T[i-1]
             Donner à T[i-1] la valeur
             temp
          fin
      fin
   fin
fin
```

Pendant le tri

Échanges

Coût d'un échange

trois affectations

```
début
   pour k de n à 2 par pas de -1 faire
      pour i de 2 à k par pas de 1 faire
          si T[i] < T[i-1] alors
             Donner à temp la valeur T[i]
             Donner à T[i] la valeur
             T[i-1]
             Donner à T[i-1] la valeur
             temp
          fin
      fin
   fin
fin
```

Boucles sur i

- *k* − 1 passages
 - une comparaison
 - au plus un échange

Boucles sur i

- Au total
 - k − 1 comparaisons
 - au plus k − 1 échanges

```
début
   pour k de n à 2 par pas de -1 faire
      pour i de 2 à k par pas de 1 faire
          si T[i] < T[i-1] alors
             Donner à temp la valeur T[i]
             Donner à T[i] la valeur
             T[i-1]
             Donner à T[i-1] la valeur
             temp
          fin
      fin
   fin
fin
```

Boucles sur k

- « pour k de n à 2 par pas de -1 »
 - Boucle sur i
 - k − 1 comparaisons
 - au plus k − 1 échanges

Boucles sur k

- Au total
 - (n-1) + (n-2) + ... + 1 comparaisons
 - au plus (n-1)+(n-2)+...+1 échanges

```
début
   pour k de n à 2 par pas de -1 faire
      pour i de 2 à k par pas de 1 faire
          si T[i] < T[i-1] alors
             Donner à temp la valeur T[i]
             Donner à T[i] la valeur
              T[i-1]
             Donner à T[i-1] la valeur
             temp
          fin
      fin
   fin
fin
```

Pendant le tri

- Affectations : au plus $\frac{3n(n-1)}{2}$
- Comparaisons : $\frac{n(n-1)}{2}$

Hypothèses

- Chaque affectation prend un temps constant
- Chaque comparaison prend un temps constant
- (À prendre avec précautions)

```
début
   pour k de n à 2 par pas de -1 faire
      pour i de 2 à k par pas de 1 faire
          si T[i] < T[i-1] alors
             Donner à temp la valeur T[i]
             Donner à T[i] la valeur
             T[i-1]
             Donner à T[i-1] la valeur
             temp
          fin
      fin
   fin
fin
```

Pendant le tri

- Affectations : au plus $\frac{3n(n-1)}{2}$
- Comparaisons : $\frac{n(n-1)}{2}$

Temps de calcul

- La partie de degré 1 en n est négligeable devant la partie en n² quand n devient grand
- Du type $K \times n^2$
- Croissance de type quadratique par rapport à n
- On dit que l'algorithme est en O(n²)

Fonction TriFusion (*T,n,debut,fin*)

Entrée : Un tableau T de n entiers et des entiers debut et fin

Résultat : Le tableau T trié entre debut et fin

début

variables locales : Un entier *milieu*, un tableau *temp* de *n* entiers si *debut < fin* alors

Donner à milieu la valeur \[\frac{debut+fin}{2} \]
TriFusion (T,n,debut,milieu)
TriFusion (T,n,milieu+1,fin)
Interclassement (T,n,debut,milieu,fin)

fin

fin

Fonction Interclassement (*T,n,debut,milieu,fin*)

Entrée : Un tableau T de n entiers, des entiers debut, milieu et fin

Résultat : Le tableau *T* interclassé entre *debut* et *fin*

```
début
```

```
variables locales: Des entiers i, j, k, un tableau temp de n entiers
    Donner à i la valeur debut
    Donner à j la valeur milieu + 1
    pour k de debut à fin par pas de 1 faire
         si (i > fin ou (i < milieu et T[i] < T[i])) alors
             Donner à temp[k] la valeur T[i]
             Donner à i la valeur i + 1
         sinon
             Donner à temp[k] la valeur T[i]
             Donner à i la valeur i + 1
         fin
    fin
    % copier le tableau résultat temp à sa place dans le tableau T %
    pour k de debut à fin par pas de 1 faire
         Donner à T[k] la valeur temp[k]
    fin
fin
```

Remarque

- Contrairement aux algorithmes précédents, le tri fusion n'est pas un tri « en place », puisque l'interclassement utilise un tableau auxiliaire de même taille que le tableau initial.
- Avec une implémentation astucieuse, on peut améliorer la gestion de la mémoire pour l'interclassement, mais l'algorithme est alors ralenti.
- Le tri par tas est un algorithme de tri en place sophistiqué de complexité $\mathcal{O}(n \log n)$

```
Fonction TriFusion (T,n,debut,fin)

début

si debut < fin alors

Donner à milieu la valeur [debut+fin/2]
TriFusion (T,n,debut,milieu)
TriFusion (T,n,milieu+1,fin)
Interclassement (T,n,debut,milieu,fin)
fin

fin
```

Fonction TriFusion (*T,n,debut,fin*)

début

si debut < fin alors

Donner à milieu la valeur \[\frac{debut+fin}{2} \]
Trifusion (T,n,debut,milieu)
Trifusion (T,n,milieu+1,fin)
Interclassement (T,n,debut,milieu,fin)

fin

fin

Pendant le tri

- Comparaison
- Calcul du milieu
- Appels récursifs à la fonction TriFusion
- Interclassement

Opérations élémentaire

- comparaison
 - addition
- division
- affectation
- appel récursif

---- hypothèse du coût unitaire

Fonction TriFusion (*T,n,debut,fin*)

début

si debut < fin alors

Donner à milieu la valeur \(\frac{\text{debut} + \text{fin}}{2} \)

TriFusion (\(T, n, \text{debut}, milieu \)

TriFusion (\(T, n, milieu + 1, \text{fin} \)

Interclassement (\(T, n, \text{debut}, milieu, \text{fin} \)

| fin fin

Pendant le tri

- Comparaison
- Calcul du milieu
- Appels récursifs à la fonction TriFusion
- Interclassement

Opérations élémentaire

- comparaison
- addition
- division
- affectation
- appel récursif
- → hypothèse du coût unitaire

Fonction Interclassement (*T,n,debut,milieu,fin*)

```
début
    Donner à i la valeur debut
    Donner à i la valeur milieu + 1
   pour k de debut à fin par pas de 1 faire
       si (j > fin ou (i \le milieu et T[i] < T[j]))
       alors
            Donner à temp[k] la valeur T[i]
            Donner à i la valeur i+1
       sinon
            Donner à temp[k] la valeur T[j]
           Donner à i la valeur i + 1
       fin
   fin
   pour k de debut à fin par pas de 1 faire
       Donner à T[k] la valeur temp[k]
   fin
fin
```

Interclassement

Deux tableaux de *m* nombres déjà triés

- deux affectations
- une addition
- première boucle sur k
 - m passages
 - trois tests
 - deux affectations
 - une addition
- deuxième boucle sur k
 - m passages
 - une affectation

Fonction Interclassement (*T,n,debut,milieu,fin*)

```
début
```

fin

fin

```
Donner à i la valeur debut
Donner à i la valeur milieu + 1
pour k de debut à fin par pas de 1 faire
   si (j > fin ou (i \le milieu et T[i] < T[j]))
   alors
        Donner à temp[k] la valeur T[i]
        Donner à i la valeur i+1
   sinon
        Donner à temp[k] la valeur T[j]
       Donner à i la valeur i + 1
   fin
fin
pour k de debut à fin par pas de 1 faire
```

Donner à T[k] la valeur temp[k]

- Au total
 - 7m + 3 opérations élémentaires

4日ト 4周ト 4 三ト 4 三 り 9 0 0

Interclassement

Deux tableaux de *m* nombres déjà triés

- 3m tests
- 3m + 2 affectations
- m+1 additions

Interclassement

Deux tableaux de m nombres déjà triés

fin

```
Fonction TriFusion (T,n,debut,fin)

début

si debut < fin alors

Donner à milieu la valeur [debut+fin/2]
TriFusion (T,n,debut,milieu)
TriFusion (T,n,milieu+1,fin)
Interclassement (T,n,debut,milieu,fin)
fin
```

Pour simplifier

 $n = 2^k$

Fonction TriFusion (*T,n,debut,fin*)

début

si debut < fin alors

Donner à milieu la valeur $\lfloor \frac{debut+fin}{2} \rfloor$ TriFusion (T,n,debut,milieu) TriFusion (T,n,milieu+1,fin) Interclassement (T,n,debut,milieu,fin)

fin

fin

Coût du tri

- Trier un tableau de 2^k
 nombres = interclasser deux
 tableaux de 2^{k-1} nombres
 déjà triés + trier deux tableaux
 de 2^{k-1} nombres
- Trier un tableau de 2^{k-1}
 nombres = interclasser deux
 tableaux de 2^{k-2} nombres
 déjà triés + trier deux tableaux
 de 2^{k-2} nombres
- Etc.
- Trier un tableau de 2⁰ nombres : une comparaison

Fonction TriFusion (*T,n,debut,fin*)

début

si debut < fin alors

Donner à *milieu* la valeur $\lfloor \frac{debut+fin}{2} \rfloor$ TriFusion (*T*,*n*,*debut*,*milieu*) TriFusion (*T*,*n*,*milieu*+1,*fin*)

Interclassement(T,n,debut,milieu,fin)

| fin

Coût du tri

- T_i = Coût du tri d'un tableau de 2ⁱ nombres
- $T_0 = 1$
- $T_{i+1} = 7 \times 2^i + 3 + 2 \times T_i + 3$

Dérécursivisation

- $T_k = (7k+1)2^{k-1} + 6k$
- Résultat à prendre avec précautions

Fonction TriFusion (*T,n,debut,fin*)

début

si debut < fin alors

Donner à milieu la valeur $\lfloor \frac{debut+fin}{2} \rfloor$ TriFusion (T,n,debut,milieu) TriFusion (T,n,milieu+1,fin) Interclassement (T,n,debut,milieu,fin)

fin

fin

Coût du tri

- T_i = Coût du tri d'un tableau de 2ⁱ nombres
- $T_0 = 1$
- $T_{i+1} = 7 \times 2^i + 3 + 2 \times T_i + 3$

Dérécursivisation

- $T_k = (7k+1)2^{k-1} + 6k$
- Résultat à prendre avec précautions

Fonction TriFusion (*T,n,debut,fin*)

début

si debut < fin alors

Donner à milieu la valeur \[\frac{\text{debut} + fin}{2} \]
TriFusion (T,n,debut,milieu)
TriFusion (T,n,milieu+1,fin)
Interclassement (T,n,debut,milieu,fin)

fin

fin

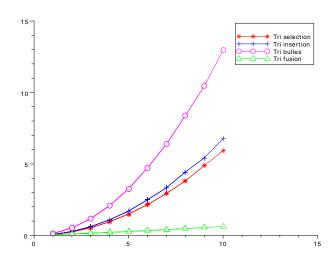
Coût du tri

• $T_k = (7k+1)2^{k-1} + 6k$ opérations élémentaires

Temps de calcul

- Le terme en k est négligeable devant le terme en k × 2^k quand k devient grand
- On revient à $n = 2^k$
- Du type $K \times n \log n$
- On dit que l'algorithme est en O(n log n)

Vérification expérimentale



1 Les nombres de Fibonacci

2 Les tris

3 Pour aller plus loin

Des tris encore plus rapides?

On a vu

- Des algorithmes de tri dont la complexité dans le pire des cas est en $\mathcal{O}(n^2)$ (tri par insertion, tri par sélection, tri à bulles)
- Le tri fusion, dont la complexité dans le pire des cas est en O(n log n)

Peut-on faire mieux?

Existe-t-il des algorithmes de tri asymptotiquement plus rapides que le tri fusion de plus d'un facteur constant?

Une précision importante

Ces \mathcal{O} sont en fait des Θ

Les pires des cas se produisent effectivement :

- Pour le tri par insertion, et le tri à bulles, le pire des cas se produit quand le tableau est déjà trié dans l'ordre inverse.
- Pour le tri par sélection, toutes les exécutions sont à peu près les mêmes
- Pour le tri fusion, si la longueur du tableau est une puissance de deux, c'est un peu plus rapide

Remarque

$$f(n) = \mathop{\Theta}\limits_{n \to +\infty} (g(n))$$
 ssi $\exists N, c, C \ \forall n > N \ |c \cdot g(n)| < |f(n)| < |C \cdot g(n)|$

Tris par comparaisons

Définition

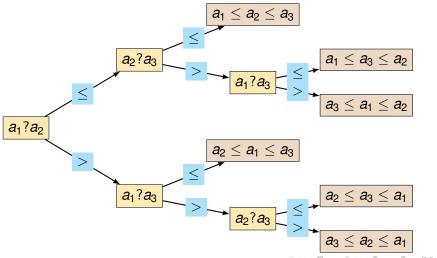
- Entrée *a*₁, *a*₂, . . . , *a*_n
- Les informations sur les objets à trier sont obtenues uniquement par des comparaisons $a_i \stackrel{?}{\leq} a_i$
- (On suppose a_1, a_2, \dots, a_n tous distincts)

Tous les algorithmes de tri qu'on a vus sont des tris par comparaisons

Modèle abstrait

- Arbre de décision
- Représenter toutes les comparaisons effectuées par l'algorithme sur des entrées d'une taille donnée

Tri par insertion de 3 éléments a_1, a_2, a_3



Arbre de décision pour un tri sur *n* éléments

Structure

- Nœud interne : comparaison a_i?a_i
- Arbre binaire : deux réponses possibles pour chaque comparaison
- Feuille : résultat du tri (étiquetée par une permutation de 1,...,n)

Exécution de l'algorithme

- Chemin de la racine à une feuille
- Nombre de comparaisons = nombre de nœuds internes

Algorithme correct

Toutes les n! permutations de $1, \ldots, n$ sont des feuilles

Nombre de comparaisons

Pire des cas

- Plus long chemin de la racine à une feuille
- Hauteur de l'arbre de décision

Théorème

Un arbre de décision permettant de trier n éléments est de hauteur $\Omega(n \log n)$

Remarque (Notation Ω)

$$f(n) = \mathop{\Omega}\limits_{n o +\infty}(g(n))$$
 ssi $\exists N, c$ t.q. $\forall n > N$ $c \, |g(n)| \leq |f(n)|$

Preuve du théorème

Théorème

Un arbre de décision permettant de trier *n* éléments est de hauteur $\Omega(n \log n)$

- hauteur de l'arbre h
- un arbre binaire de hauteur h possède au plus 2h feuilles
- cet arbre de décision permet de trier *n* éléments
- toutes les n! permutations apparaissent comme feuilles de l'arbre
- donc $n! \leq 2^h$ ou encore $h \geq \log_2(n!)$
- formule de Stirling $n! > (\frac{n}{2})^n$
- finalement finalement $h \ge \log_2\left(\left(\frac{n}{e}\right)^n\right) = n\log_2(n) - n\log_2(e) = \Omega(n\log n)$

La réponse

Théorème

Un arbre de décision permettant de trier n éléments est de hauteur $\Omega(n \log n)$

Corollaire

- Aucun tri par comparaisons ne possède une complexité meilleure que O(n log n)
- Le tri fusion a une complexité optimale

Remarque

Ce résultat ne concerne que les tris par comparaisons, puisqu'il est basé sur le modèle des arbres de décision.

D'autres tris

Deux exemples qui ne sont pas des tris par comparaisons

- Tri par dénombrement
 - permet de trier des nombres bornés
- Tri par base
 - permet de trier des nombres de longueur bornée

Avant-goût

On va voir que ces tris ont une complexité linéaire

Remarque

Mais ce sont des tris spécialisés, qui ne permettent pas de trier n'importe quelles données

Tri par dénombrement

Hypothèse

Les entiers à trier appartiennent à $\{0, \dots, k-1\}$

Principe

- Créer un tableau Compte de longueur k rempli de 0
- Parcourir le tableau T à trier
- Pour tout i, incrémenter Compte[T[i]]
- Ensuite, parcourir de nouveau le tableau T en le remplissant de Compte[0] fois le nombre 0, suivis de Compte[1] fois le nombre 1, etc.

Tri par dénombrement

Complexité

Pourvu que k ne soit pas trop grand (c.-à-d. $k = \mathcal{O}(n)$), le tri par dénombrement est en $\mathcal{O}(n)$ car essentiellement on parcourt deux fois le tableau à trier.

Remarque

Une contradiction?

Non, car ce n'est pas un tri par comparaisons! Cet algorithme n'effectue d'ailleurs **aucune** comparaison...

Tri par base

Hypothèse

Les entiers à trier ont une longueur fixe

Exemple

329		720		720		329
457		355		329		355
657		436		436		436
839	\Rightarrow	457	\Rightarrow	839	\Rightarrow	457
436		657		355		657
720		329		457		720
355		839		657		839
		\uparrow		\uparrow		\uparrow

Tri par base

Principe

- On trie d'abord selon le chiffre des unités
- Puis selon le chiffre suivant, etc.
- On termine par le chiffre de plus grand poids
- Il est essentiel d'utiliser pour les étapes intermédiaires un tri stable

Remarque

Un tri stable est un tri qui conserve l'ordre relatif des indices des valeurs égales

Tri par base

Complexité

- Tout dépend de celle du tri stable utilisé...
- Il semble raisonnable d'utiliser un tri par dénombrement, puisque les chiffres dans une base donnée sont peu nombreux.
- La complexité du tri par base est alors en $\mathcal{O}(n)$, puisqu'on applique un nombre fixe de fois un algorithme linéaire.

FIN