Bonnes pratiques algorithmiques

Philippe Lac

(philippe.lac@ac-clermont.fr)

Malika More

(malika.more@u-clermont1.fr)

IREM Clermont-Ferrand

Stage Algorithmique

Année 2010-2011

Contenu

- Présentation des algorithmes
 - Présentation extérieure
 - Présentation intérieure
- Conception des algorithmes
- 3 Conclusion

Adopter des habitudes de rigueur

Lisibilité des algorithmes

- Pour se simplifier la vie quand les algorithmes deviennent longs et/ou nombreux
- Pour se faire comprendre
- Pour l'intérêt pédagogique, encore renforcé par la programmation

Formalisation des algorithmes

- Pour faciliter la conception d'algorithmes corrects
- Pour faciliter l'étude théorique des algorithmes
- (Pour l'efficacité des algorithmes)

- Présentation des algorithmes
 - Présentation extérieure
 - Présentation intérieure
- Conception des algorithmes
- 3 Conclusion

- Présentation des algorithmes
 - Présentation extérieure
 - Présentation intérieure

- 2 Conception des algorithmes
- 3 Conclusion

Présentation naïve

Algorithme 1 : Mon algo

Lire le nombre aLire le nombre btant que $b \neq 0$ faire

Donner à *temp* la valeur *b*Donner à *b* la valeur *a* mod *b*Donner à *a* la valeur *temp*

fin

Afficher a

Premier principe

Critiques

- Titre non informatif
- Données entrées au clavier : intervention humaine nécessaire
- Affichage du résultat : il n'est pas réutilisable (par exemple par un autre programme)

Conseils

- Séparer les entrées/sorties du traitement, c'est-à-dire de l'algorithme proprement dit
- On obtient alors une fonction qui prend en entrée des données et renvoie un résultat

Fonction Euclide (a,b : entiers)

Entrée : Deux entiers *a* et *b* **Sortie** : Le pgcd de *a* et *b*

Description: Implémentation de l'algorithme d'Euclide

début

| ...

fin

Intérêt

- Vision des algorithmes comme des briques réutilisables, composables
- Description conceptuelle, indépendante des détails techniques
- On peut envisager une étude théorique des algorithmes
- (On peut envisager des algorithmes récursifs)

Exemple

```
Fonction Euclide (a,b : entiers)

début

Donner à x la valeur a

Donner à y la valeur b

tant que y ≠ 0 faire

Donner à temp la valeur y

Donner à y la valeur x mod y

Donner à x la valeur temp

fin

retourner : x

fin
```

Remarque

- Séparation entre les données a, b et les variables x, y, temp
- Pour un langage de programmation, c'est un peu plus compliqué

Algorithme vs. Fonction (mathématique)

Point commun essentiel

Un objet qui prend en entrée des données et renvoie un résultat

Différences

- Effectivité des algorithmes (encore que...)
- Paramètres vs. variables (encore que...)
- Etc.

- Présentation des algorithmes
 - Présentation extérieure
 - Présentation intérieure

- Conception des algorithmes
- 3 Conclusion

Second principe

Améliorer la lisibilité de l'algorithme

- Pour soi (l'année suivante...)
- Pour les autres : élèves (mais aussi dans la vraie vie)

Conseils

- Commentaires décrivant le déroulement de l'algorithme
- Noms de variables explicites
- (Messages à l'écran pour l'utilisateur)
- Etc.

Euclide encore

Exemple

```
Algorithme 4 : Euclide commenté
```

```
début
```

```
Afficher "Entrez le nombre a"
```

Lire le nombre a Afficher "Entrez le nombre b"

% a et b sont les nombres % % dont on calcule le pgcd %

Lire le nombre b

tant que $r \neq 0$ faire

Donner à *a* la valeur *b*

% le pgcd de **a** et de **b** est % Donner à *b* la valeur *r* % eqal au pqcd de b et du reste r %

Donner à r la valeur a mod b % et on recommence %

fin

Afficher "Le pgcd est" b % le dernier reste non nul est le pgcd %

fin

Exercice

Que fait l'Algorithme 5 ? Commenter cet algorithme.

Algorithme 5: Inconnu

```
début
```

Donner à *nb* la valeur 1000

Donner à *somme* la valeur 0

pour i de 1 à nb faire

Donner à tir la valeur 1

Donner à d une valeur entière aléatoire entre 1 et 6

tant que $d \neq 6$ faire

Donner à tir la valeur tir + 1

Donner à *d* une valeur entière aléatoire entre 1 et 6

fin

Donner à somme la valeur somme + tir

fin

Afficher somme/nb

fin

20

Moralité

L'absence de commentaires peut rendre ainsi un problème, simple au départ, complexe à l'arrivée...

Question

On peut également s'interroger sur la lisibilité de certaines solutions choisies.

Exemple (fréquemment rencontré)

Algorithme 6 : Séquence

début

% a et b désignent deux nombres % a

Donner à a la valeur a + b

Donner à b la valeur a - b

Donner à a la valeur a – b

fin

Quel intérêt à utiliser cette séquence dans un algorithme?

Haro sur les astuces!

Moralité

Il arrive que des solutions astucieuses (ou élégantes intellectuellement parlant), compliquent la lecture de l'algorithme.

Remarque

L'écriture d'une preuve mathématique soulève les mêmes questions.

- Présentation des algorithmes
 - Présentation extérieure
 - Présentation intérieure
- Conception des algorithmes
- 3 Conclusion

Avertissement

- Les bonnes pratiques de conception des algorithmes sont nécessairement liées aux bonnes pratiques de programmation
- Mais il y a des notions générales indépendantes du langage considéré

Des concepts spécifiques

Exemple

- On utilise des listes ou des tableaux pour manipuler des variables indicées.
- Les instructions associées permettent d'ajouter ou de supprimer des éléments, de connaitre la longueur d'une liste, etc.
- Selon les langages de programmation, la gestion des listes et des tableaux est très variable.
- Selon la méthode choisie pour résoudre un problème, le choix d'une, ou l'autre de ces structures de données, s'avère crucial.

... sur certains desquels nous reviendrons pour une étude spécifique.

Rappels

Quelques règles de bonne pratique déjà rencontrées

- Donner le type des variables
- Initialiser toutes les variables
- Ne pas modifier la valeur des paramètres
- Ne pas modifier les compteurs de boucles

Remarque

Toute règle a ses exceptions justifiées

Nouveautés

Quelques recommandations supplémentaires

- Préférer les test ≥ ou ≤ aux tests = (on ne sait jamais)
- Éviter les sorties de boucles non controlées (instruction break)
- Déclarer toutes les variables locales en début d'algorithme (certains langages de programmation l'imposent)

Remarque

Toute règle a ses exceptions justifiées

Résultat

```
Fonction Euclide (a.b : entiers)
Entrée : Deux entiers a et b
Résultat : Le PGCD de a et b
Description: Algorithme d'Euclide
variables locales : x, y, temp : entiers
début
   Donner à x la valeur a
                                              % On initialise X à A %
   Donner à v la valeur b
                                              % On initialise y à b %
   % Début du calcul %
   tant que v > 0 faire
      Donner à temp la valeur y
                                                       % On stocke V %
      Donner à y la valeur x \mod y % On remplace y par le reste %
      Donner à x la valeur temp
                                          % X \text{ prend la valeur de } V %
   fin
   % Fin du calcul : À la sortie y = 0 donc x = pgcd(a, b) %
   retourner: x
fin
```

Une erreur de conception

```
Fonction Test de primalité(n:entier)
début
   Donner à b la valeur \lceil \sqrt{n} \rceil
   Donner à test la valeur vrai % n est potentiellement premier %
   pour k de 2 à b faire
      si k divise n alors
         Donner à test la valeur faux % n n'est pas premier %
         Donner à k la valeur b+1 % on sort de la boucle %
      fin
   fin
   retourner : test
fin
```

Analyse

- L'algorithme précédent ne respecte pas un principe important : la non modification du compteur dans une boucle pour.
- Par ailleurs, on peut noter que, sans l'instruction litigieuse
 Donner à k la valeur b+1, l'algorithme fonctionne encore :

```
Fonction Test de primalité (n : entier)

début

Donner à b la valeur \lceil \sqrt{n} \rceil

Donner à test la valeur vrai % n est potentiellement premier % pour k de 2 à b faire

si k divise n alors

Donner à test la valeur faux % n n'est pas premier % fin

fin

retourner: test
```

- Mais ce nouvel algorithme fait des calculs inutiles
- Cela soulève une autre préocupation à avoir dans la mise en place de bonnes pratiques, à savoir l'efficacité des algorithmes
- Nous y reviendrons largement à propos de la complexité algorithmique

Le choix de la boucle

- Cette version est plus correcte d'un point de vue algorithmique, mais moins efficace.
- Il s'agit d'un problème essentiel de conception : le type de boucle choisi n'est évidemment pas le bon.

Exercice

Réécrire l'algorithme précédent, à l'aide de la structure de boucle adaptée.

Remarque

Réciproquement, lorsqu'une boucle tant que répond au cahier des charges d'une boucle pour, on lui préfèrera l'utilisation de cette dernière, dans un souci de clarté.

D'une façon générale

Dans un souci d'efficacité et de clarté

On privilégie une programmation structurée, et donc l'utilisation des outils adaptés (fonctions, structures de données . . .)

- 1 Présentation des algorithmes
 - Présentation extérieure
 - Présentation intérieure
- Conception des algorithmes
- 3 Conclusion

N'exagérons pas!

On est parti d'un algorithme présenté naïvement :

Algorithme 10 : Mon algo Lire le nombre aLire le nombre btant que $b \neq 0$ faire

Donner à *temp* la valeur *b* Donner à *b* la valeur *a* mod *b* Donner à *a* la valeur *temp*

fin Afficher a

Pour arriver à un algorithme très structuré :

N'exagérons pas!

```
Fonction Euclide (a,b:entiers)
Entrée : Deux entiers a et b
Résultat : Le PGCD de a et b
Description: Algorithme d'Euclide
variables locales : x, y, temp : entiers
début
   Donner à x la valeur a
                                             % On initialise X à A %
   Donner à y la valeur b
                                             % On initialise V à b %
   % Début du calcul %
   tant que y > 0 faire
      Donner à temp la valeur y
                                                      % On stocke V %
      Donner à y la valeur x \mod y % On remplace y par le reste %
      Donner à x la valeur temp
                                         % X  prend la valeur de V  %
   fin
   % Fin du calcul : À la sortie y = 0 donc x = pgcd(a, b) %
   retourner: x
fin
```

N'exagérons pas!

Mais on peut considérer que cette troisième version est suffisante pour un cas aussi simple et aussi bien connu :

```
Fonction Euclide (a,b : entiers)

début

| Donner à x la valeur a
| Donner à y la valeur b
| tant que y ≠ 0 faire
| Donner à temp la valeur y
| Donner à y la valeur x mod y
| Donner à x la valeur temp
| fin
| retourner : x
```

FIN