Parcours

Philippe Lac

(philippe.lac@ac-clermont.fr)

Malika More

(malika.more@u-clermont1.fr)

IREM Clermont-Ferrand

Stage Algorithmique

Année 2010-2011

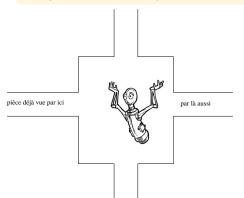
Généralités

- 2 Parcours en largeur
- 3 Parcours en profondeur

- Généralités
- 2 Parcours en largeur
- 3 Parcours en profondeur

Le robot explorateur

Un robot a pour mission d'explorer un bâtiment d'importance archéologique. Ce bâtiment a été englouti par une coulée de boue. Au cours des âges, la boue a séché et forme des blocs compacts difficiles à percer.

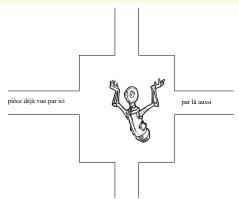


Les balises

Le robot dispose de petites balises pour marquer chaque pièce explorée et/ou aperçue. Ainsi depuis la pièce où il se trouve, il peut détecter quels couloirs mènent à une pièce balisée.

Question

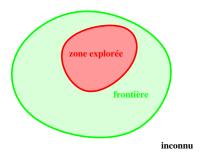
Quelle stratégie pourrait-il adopter afin d'explorer entièrement le bâtiment en minimisant le nombre de couloirs traversés (puisqu'il faut déblayer la boue avant)?



Stratégie

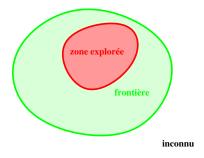
On garde en mémoire l'ensemble des sommets connus, partitionné en deux :

- d'une part, ceux qu'on a complètement visités, qui forment la zone explorée; et,
- d'autre part, ceux qu'on n'a pas encore entièrement visités, ou seulement aperçus, qui forment la frontière de la zone explorée.



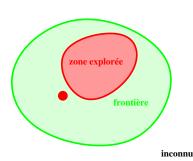
Méthode

- ou bien tous les voisins de s sont dans la zone explorée ou dans la frontière
 - et on peut ajouter s à la zone explorée;
- ou bien s a au moins un voisin t dans l'inconnu
 - et on peut ajouter *t* à la frontière



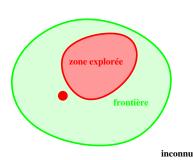
Méthode

- ou bien tous les voisins de s sont dans la zone explorée ou dans la frontière
 - et on peut ajouter s à la zone explorée;
- ou bien s a au moins un voisin t dans l'inconnu
 - et on peut ajouter *t* à la frontière



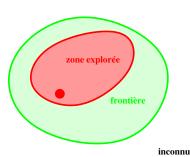
Méthode

- ou bien tous les voisins de s sont dans la zone explorée ou dans la frontière
 - et on peut ajouter s à la zone explorée;
- ou bien s a au moins un voisin t dans l'inconnu
 - et on peut ajouter *t* à la frontière



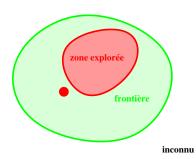
Méthode

- ou bien tous les voisins de s sont dans la zone explorée ou dans la frontière
 - et on peut ajouter s à la zone explorée;
- ou bien s a au moins un voisin t dans l'inconnu
 - et on peut ajouter *t* à la frontière



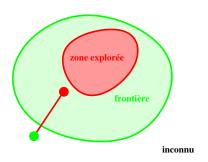
Méthode

- ou bien tous les voisins de s sont dans la zone explorée ou dans la frontière
 - et on peut ajouter s à la zone explorée;
- ou bien s a au moins un voisin t dans l'inconnu
 - et on peut ajouter *t* à la frontière



Méthode

- ou bien tous les voisins de s sont dans la zone explorée ou dans la frontière
 - et on peut ajouter s à la zone explorée;
- ou bien s a au moins un voisin t dans l'inconnu
 - et on peut ajouter t à la frontière



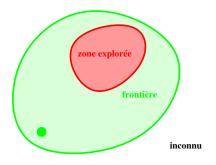
Méthode

- ou bien tous les voisins de s sont dans la zone explorée ou dans la frontière
 - et on peut ajouter s à la zone explorée;
- ou bien s a au moins un voisin t dans l'inconnu
 - et on peut ajouter *t* à la frontière.



Méthode

- ou bien tous les voisins de s sont dans la zone explorée ou dans la frontière
 - et on peut ajouter s à la zone explorée;
- ou bien s a au moins un voisin t dans l'inconnu
 - et on peut ajouter *t* à la frontière.



Comment organiser la frontière?

Le plus simple

On prend un sommet *au hasard* dans la frontière, on traite la frontière comme un *ensemble*.

- Si on marque l'arête {s, t} lorsqu'on ajoute le voisin t de s dans la frontière pendant le parcours,
- on obtient un arbre recouvrant quelconque.

Comment organiser la frontière?

Premier arrivé = premier servi

On fait attendre un sommet le moins possible dans la frontière, on traite la frontière comme une *file d'attente*.

- On obtient un arbre tel que le niveau d'un sommet dans l'arbre correspond à la distance au sommet de départ.
- Application : distance à la source.
- On parle de parcours en largeur.

Édouard Manet La queue

Comment organiser la frontière?

Dernier arrivé = premier servi

ou bien au contraite, on traite la frontière comme une pile d'attente.

- On obtient un arbre couvrant tel que tout arête du graphe qui n'est pas dans l'arbre va forcément depuis un sommet vers un de ses ancêtres
- Application : tri topologique
- On parle de parcours en profondeur.

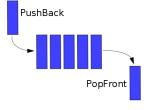
En résumé

- Parcourir un graphe connexe induit un arbre recouvrant.
- Différentes méthodes selon la structure de données choisie pour stocker la frontière.
 - File d'attente
 - Parcours en largeur
 - Distance à la source
 - Pile d'attente
 - Parcours en profondeur
 - Tri topologique
 - Calcul des blocs

Définition d'une file

Les primitives permettant de gérer une file sont :

- Ajouter un sommet (toujours derrière) la file (pushback)
- Enlever un sommet (toujours devant) la file (popfront); et,
- Vérifier si la file est vide (empty?).



 On peut aussi juste regarder le sommet devant la file sans l'enlever (CheckFront)

Les files en pratique

- Peut se coder facilement avec des pointeurs
- Des librairies implémentant les files existent dans la majeure partie des langages de programmation
- En anglais : FIFO (First In First Out)

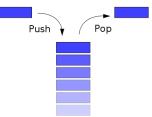
Exemple

File d'attente associée à une imprimante.

Définition d'une pile

Les primitives permettant de gérer une pile sont :

- Ajouter un sommet (toujours devant la file) (push (front))
- Enlever un sommet (toujours devant la file) (pop (front)); et,
- Vérifier si la file est vide (empty?).
- On peut aussi juste regarder le sommet devant la file sans l'enlever (CheckFront)

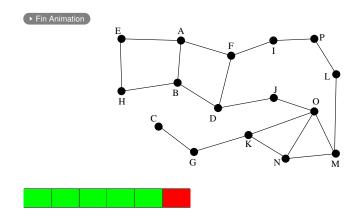


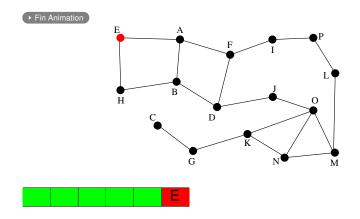
Les piles en pratique

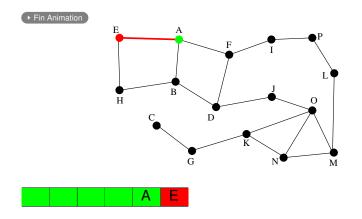
- En anglais : Stack ou bien LIFO (Last In First Out)
- Peut se coder facilement avec des pointeurs
- Des librairies implémentant les piles existent dans la majeure partie des langages de programmation

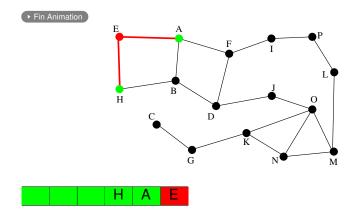
- On peut utiliser une pile si on veut implémenter un undo
- On a déjà vu la pile des appels récursifs

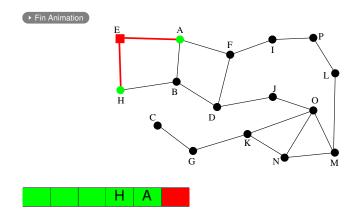
- Généralités
- 2 Parcours en largeur
- 3 Parcours en profondeur

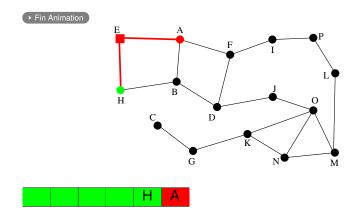


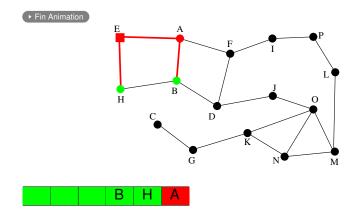


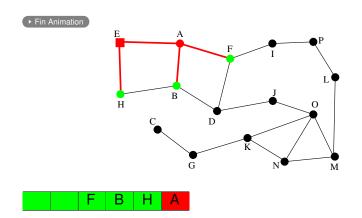


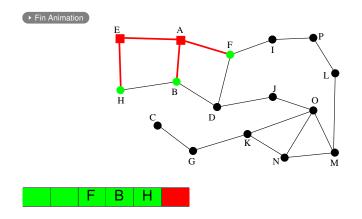


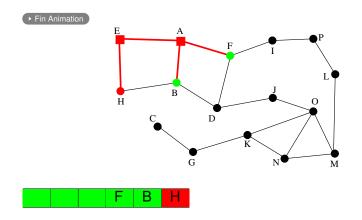


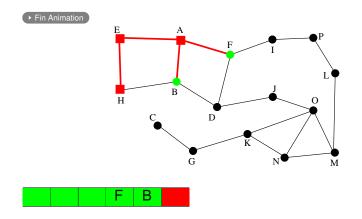


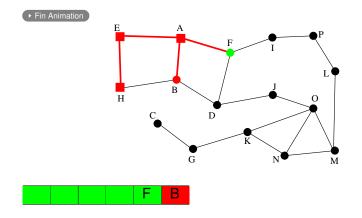


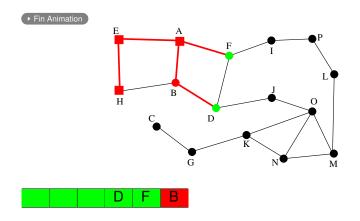


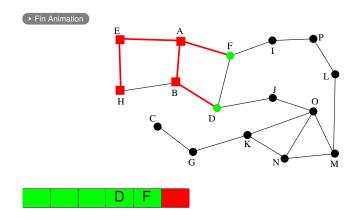


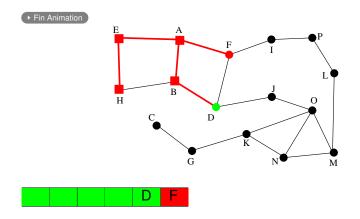


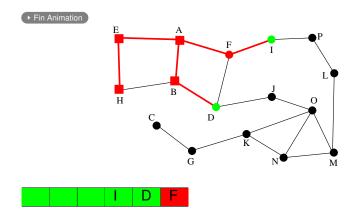


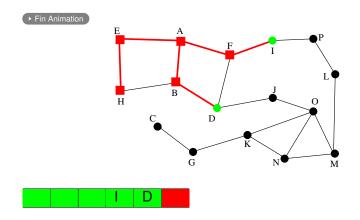


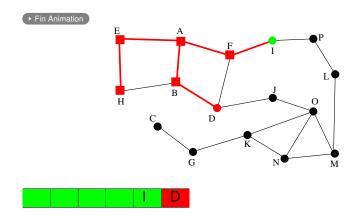


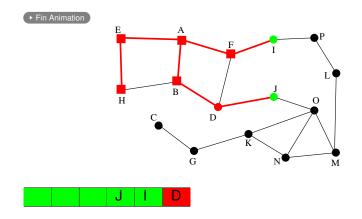


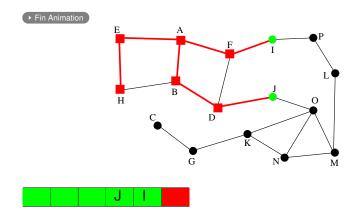


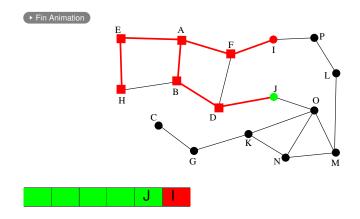




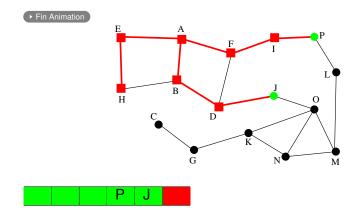


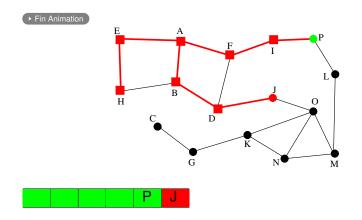


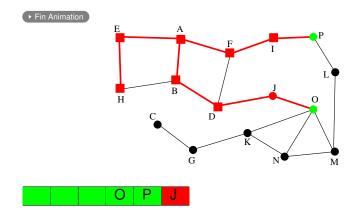


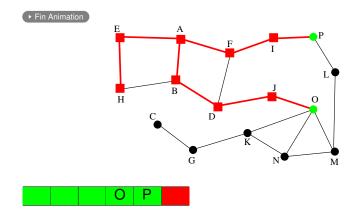


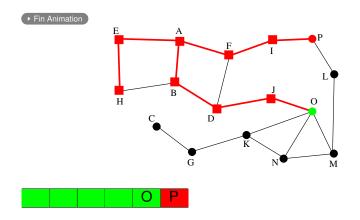


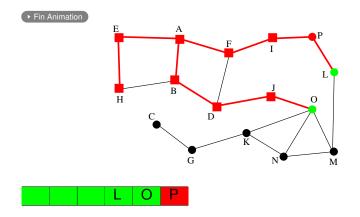


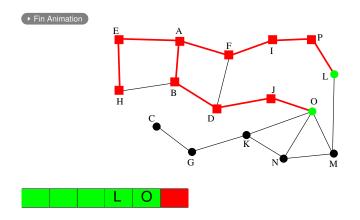


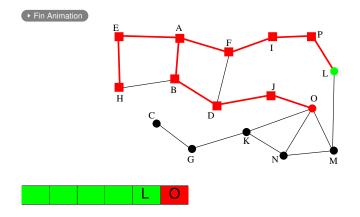


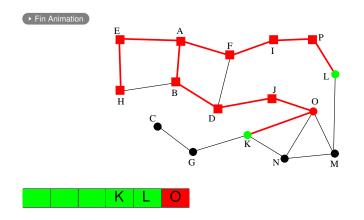


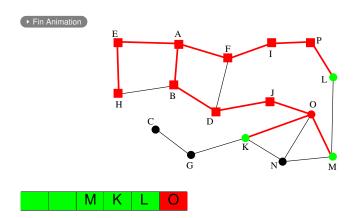




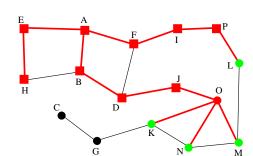


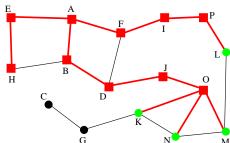


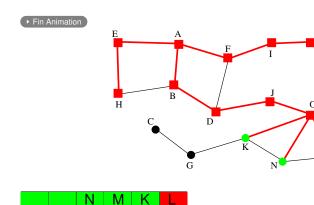


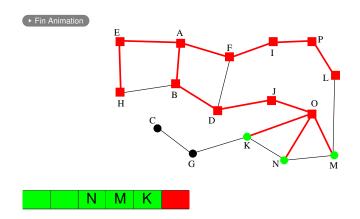


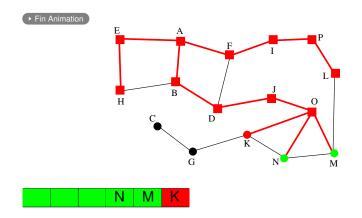
► Fin Animation

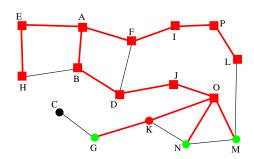




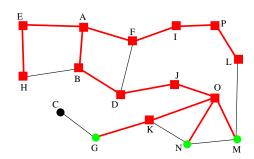


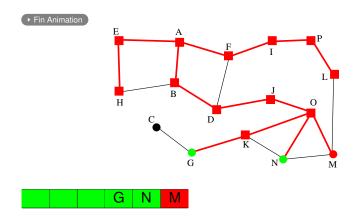


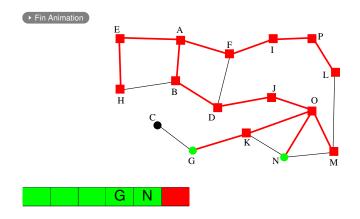


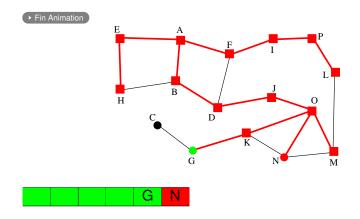


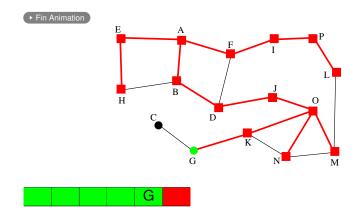
► Fin Animation

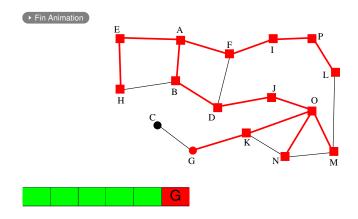


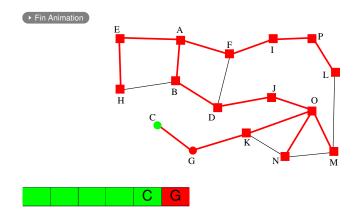


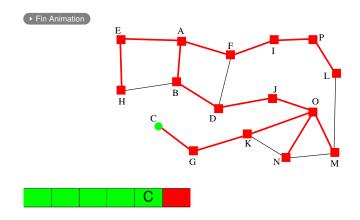


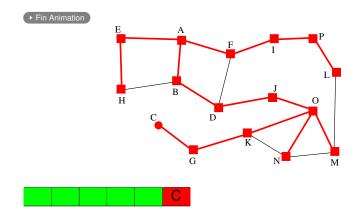


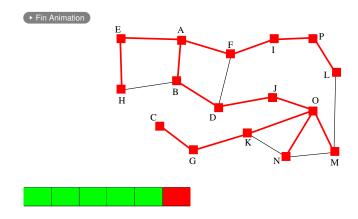












Algorithme du parcours en largeur

Entrées

- G non orienté
- s source

Initialisation

- Ajouter s devant la file
- Ajouter s à S

Variables locales

- F file (frontière)
- S ensemble des sommets connus
- u, v des sommets adjacents

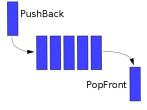
Tant que la file n'est pas vide, répéter

- prendre le premier sommet v de la file d'attente,
- ajouter chaque voisin inconnu u de v à l'arrière de la file et ajouter u à S
- enlever v de la file

Définition d'une file

Les primitives permettant de gérer une file sont :

- Ajouter un sommet (toujours derrière) la file (pushback)
- Enlever un sommet (toujours devant) la file (popfront); et,
- Vérifier si la file est vide (empty?).



 On peut aussi juste regarder le sommet devant la file sans l'enlever (CheckFront)

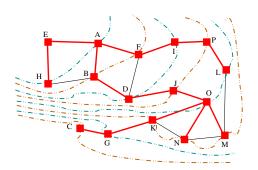
```
Algorithme 1 : Parcours en largeur
Données G un graphe s un sommet de G
Variables locales
S un ensemble
                                       /* zone connue */
F une file
                                      /* la frontière */
u. v deux sommets
début
   initialisation
   add (s, S)
   pushBack (s,F)
   répéter
      \mathbf{v} := \mathsf{checkFront}(\mathbf{F})
      si il existe u ∉ S adjacent à v alors
         add(u,S) /* première visite de u */
         pushBack (u,F)
      sinon
         popFront(F) /* dernière visite de V */
      fin
   jusqu'à empty? (F)
```

fin

Propriétés d'un arbre de parcours en largeur :

Théorème (Distance et Niveau)

Le niveau d'un sommet dans l'arbre est égal à la distance à la source dans le graphe. Autrement dit, les distances à la source dans l'arbre et dans le graphe sont les mêmes.



Preuve du théorème

- Si un sommet est au niveau d de l'arbre, alors il existe un chemin de longueur d de ce sommet à la source (par l'unique branche remontant à la source). Donc la distance est plus petite ou égale au niveau.
- On peut montrer l'inégalité inverse par récurrence sur le nombre de niveaux/les étapes de l'algorithme.
 - à la première étape, les voisins de la source sont ajoutés au niveau 1 de l'arbre.
 - supposons l'égalité vraie au rang n. Un sommet u à distance n + 1 est voisin d'un sommet v à distance n. Or le sommet v est au niveau n de l'arbre par hypothèse et u ne peut pas avoir été ajouté avant v. L'algorithme du parcours en largeur va donc ajouter u au niveau n + 1.
- Conclusion : on a bien distance=niveau

Calcul des distances à la source

Entrées

- G non orienté
- s source

Variables locales

- F file (frontière)
- S ensemble des sommets connus
- u, v des sommets adjacents

Sortie

• dist le tableau des distances à la source s

Initialisation

- Ajouter s devant la file
- Ajouter s à S
- dist[s] :=0

Tant que la file n'est pas vide, répéter

- prendre le premier sommet *v* de la file d'attente.
- ajouter chaque voisin inconnu u de v à l'arrière de la file, ajouter u à S et d[u] :=d[v]+1
- enlever v de la file

```
Algorithme 2 : Parcours en largeur + distance à la source
```

Variables locales

```
L tableau des distances à la source /* indexés par les
sommets */
début
   initialisation
   add (s,S)
   pushBack (s,F)
   L[s] := 0
   répéter
      \mathbf{v} := \mathsf{checkFront}(\mathbf{F})
      si il existe u \notin S adjacent à v alors
         add (u,S) /* première visite de u */
         pushBack (u,F)
         L[u] := L[v] + 1
      sinon
         popFront(F) /* dernière visite de V */
      fin
   iusqu'à empty? (F)
```

fin

Sortie : L, tableau des distances à la source s

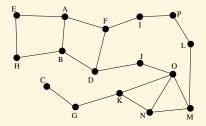
Arbre de parcours en largeur

Propriété

On considère un graphe connexe et un arbre de parcours en largeur. Tout arête du graphe est :

- (i) soit une arête de l'arbre de parcours en largeur
- (ii) soit si ce n'est pas le cas, une arête entre deux sommets dont les niveaux diffèrent d'au plus 1

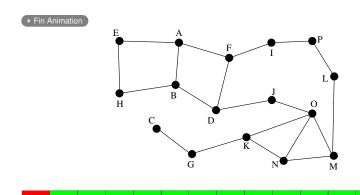
Exercice

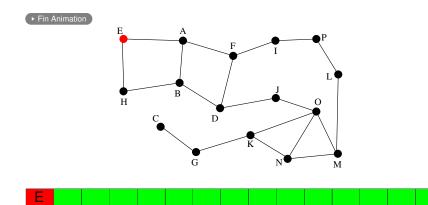


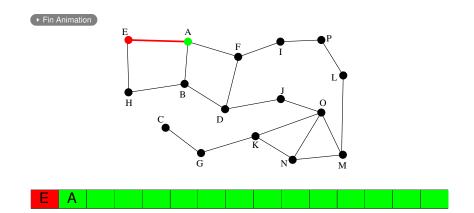
- Faire un parcours en largeur différent de celui de l'exemple du cours en partant du sommet E. Indiquez à chaque étape l'état de la pile et de l'arbre de parcours.
- Effectuez un parcours en largeur depuis O, en choisissant toujours le plus petit sommet dans l'ordre alphabétique. En déduire les distances entre O et les autres sommets.

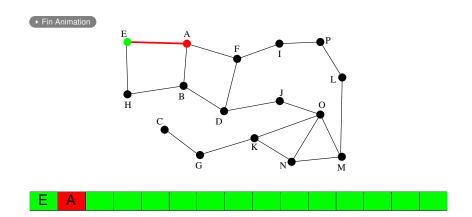
Généralités

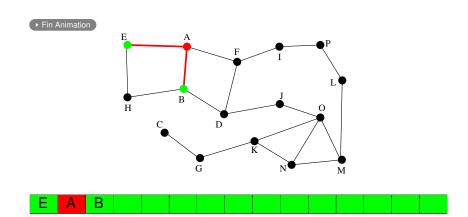
- Parcours en largeur
- 3 Parcours en profondeur

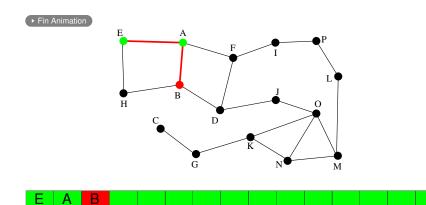


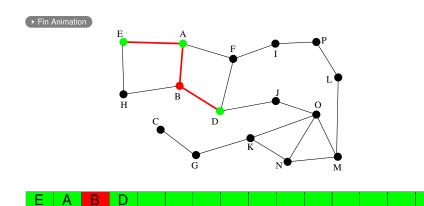


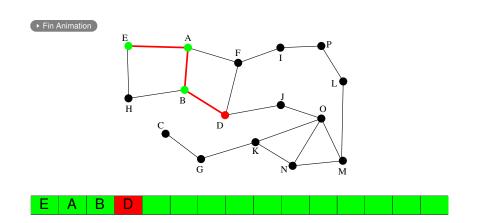


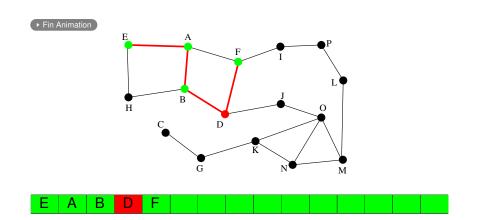


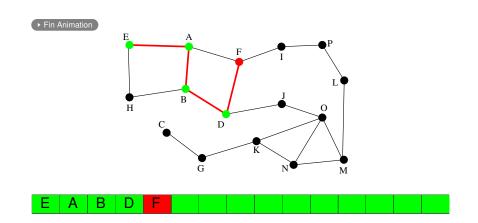


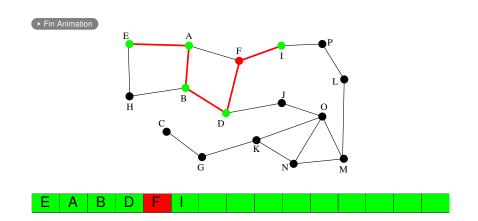


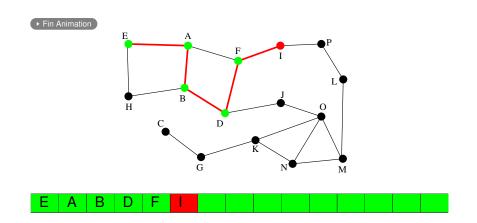


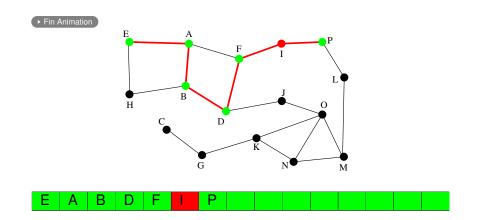


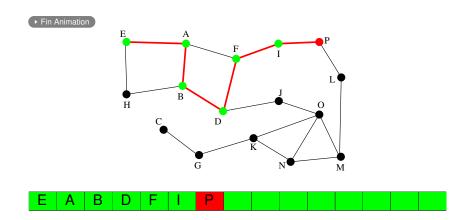


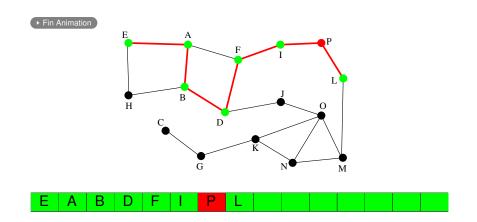


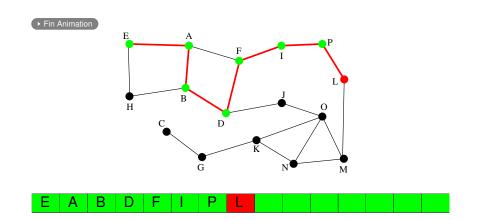


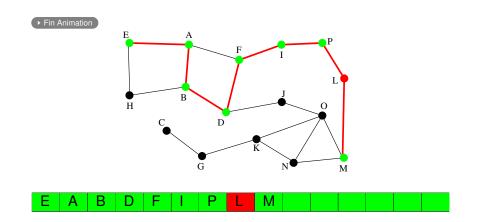


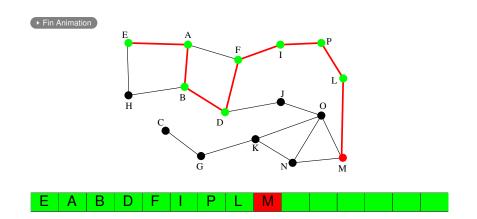


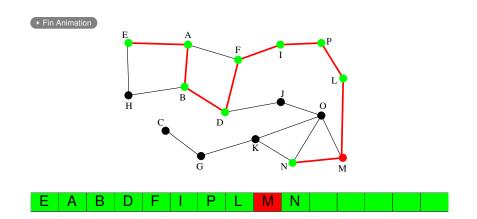


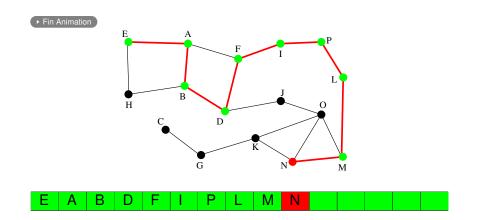


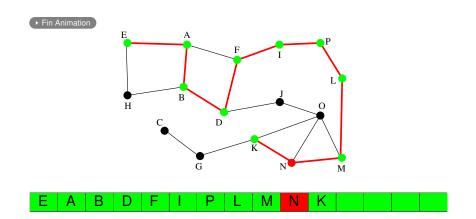


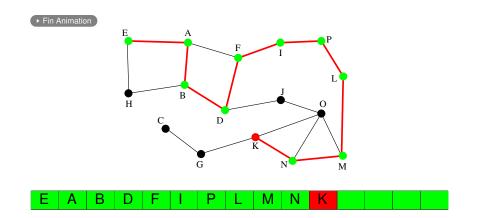


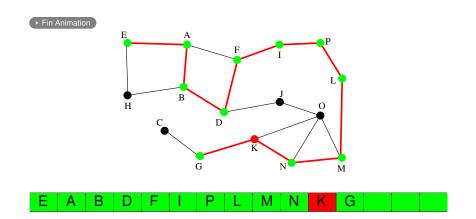


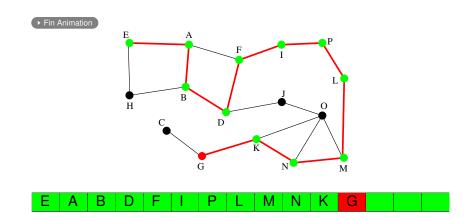


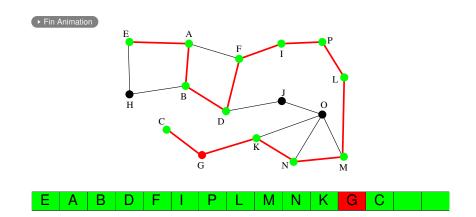


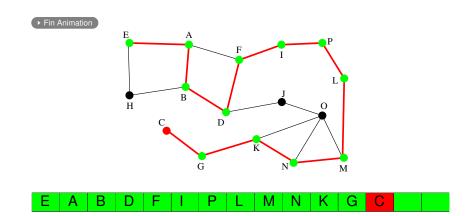


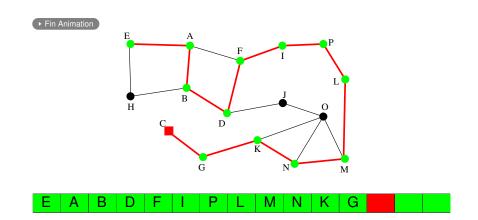


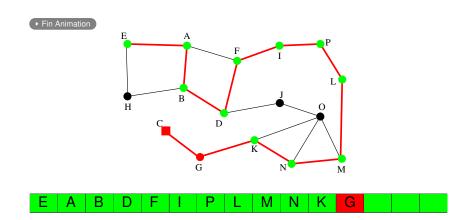


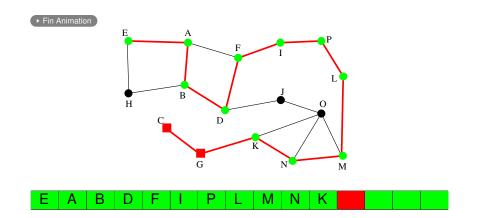


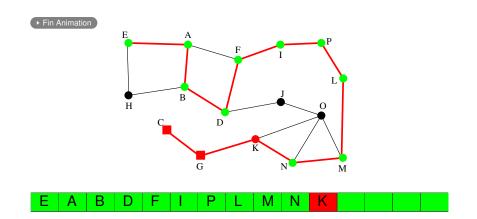


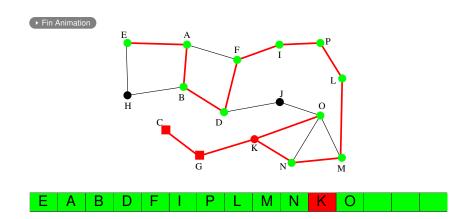


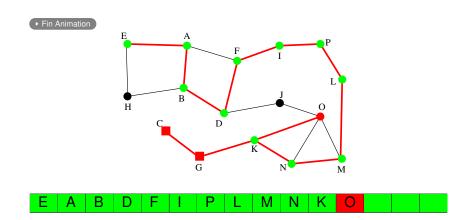


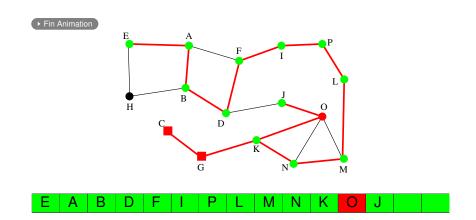


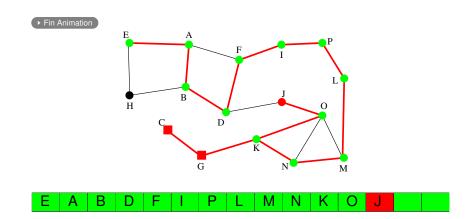


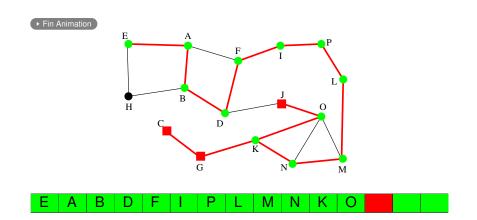


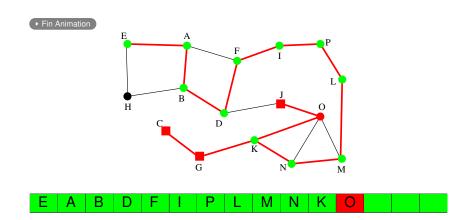


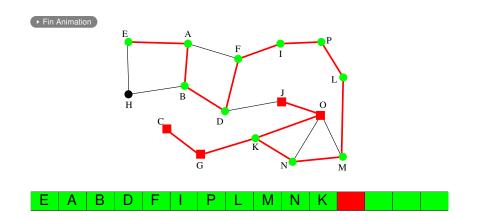


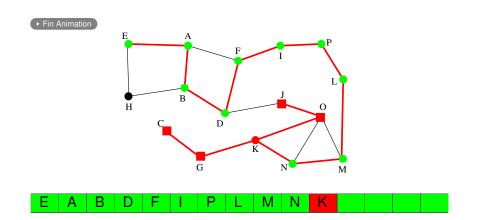


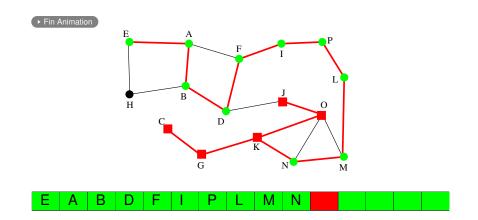


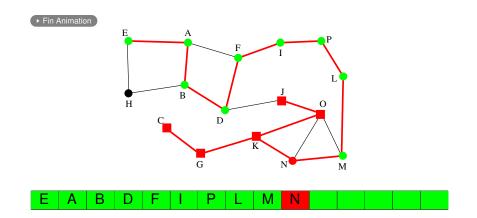


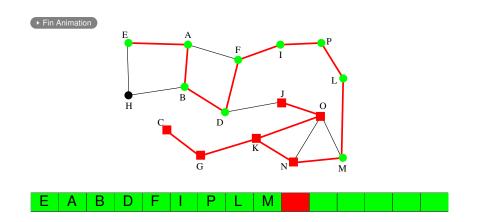


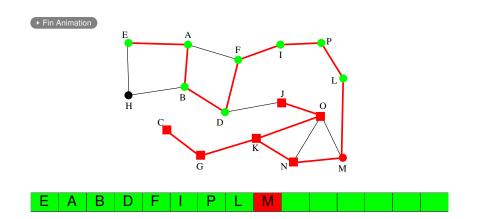


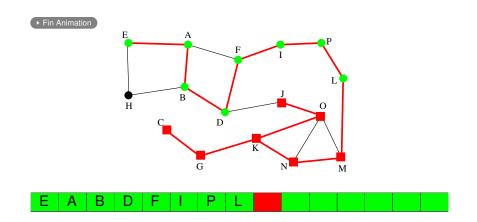


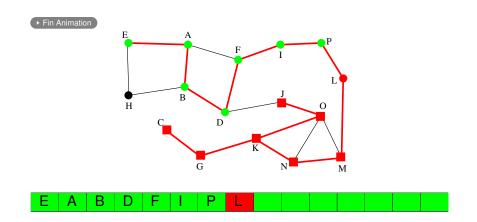


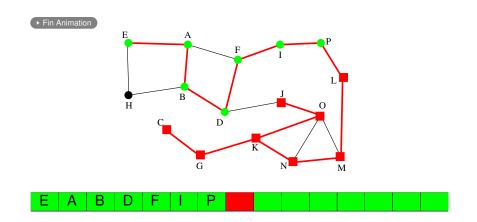


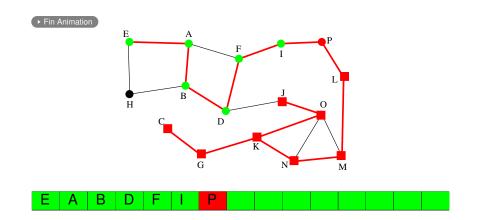


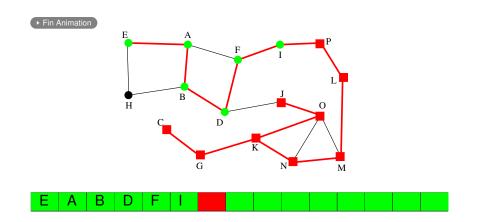


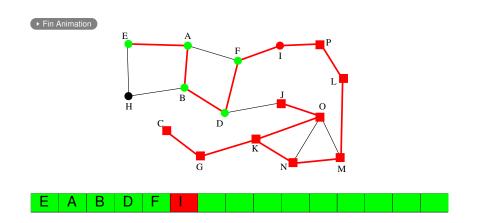


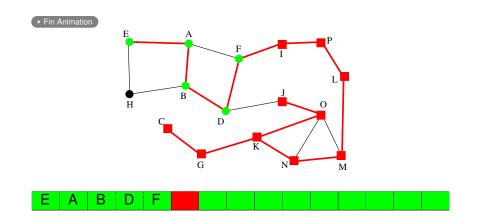


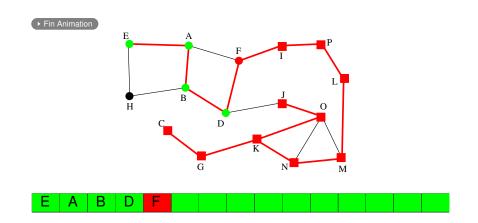


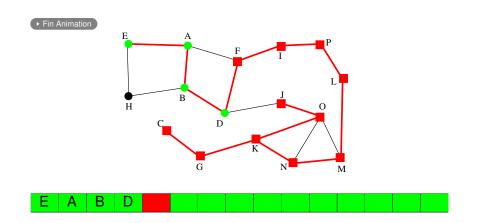


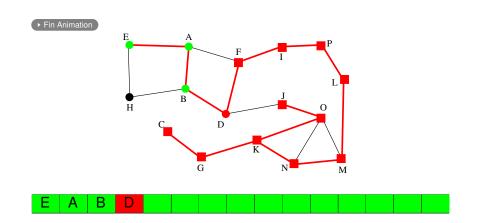


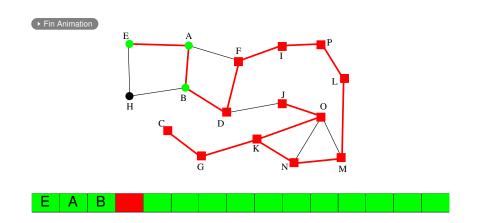


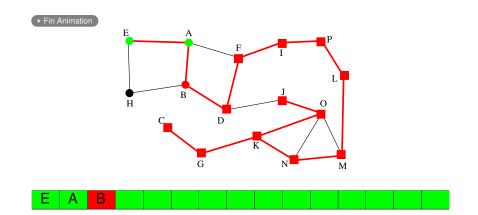


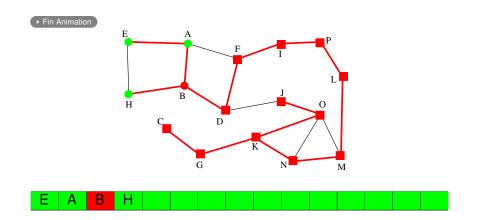


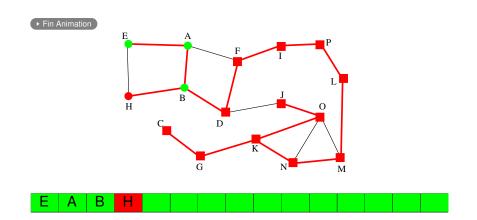


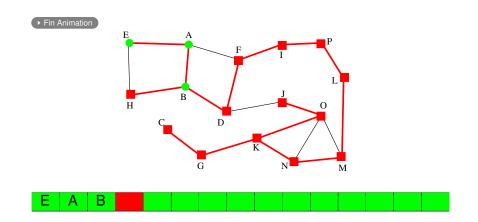


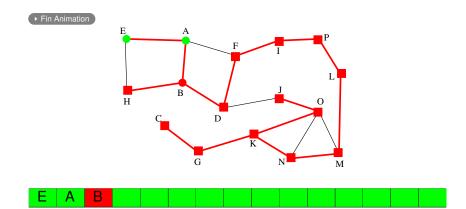


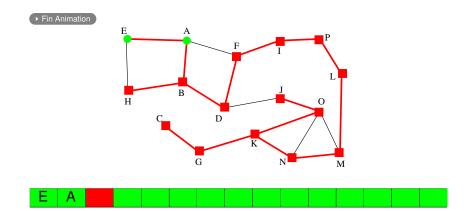


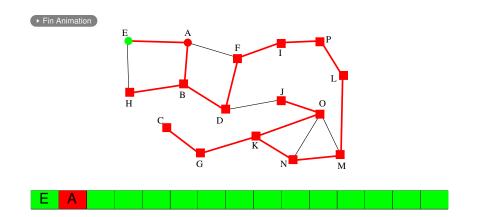


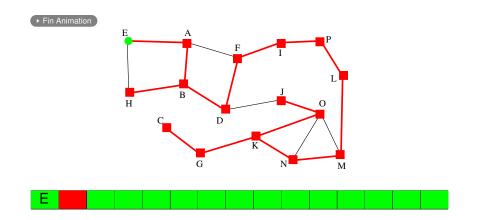


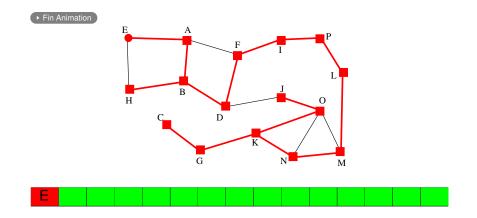


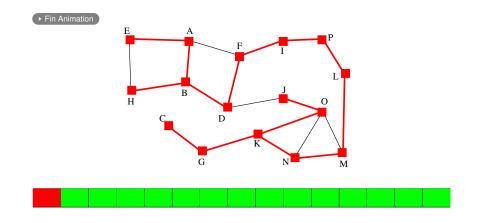












Algorithme du parcours en profondeur

Entrées

- G non orienté
- s source

Initialisation

- Ajouter s sur la pile
- Ajouter s à S

Variables locales

- P pile (frontière)
- S ensemble des sommets connus
- *u*, *v* des sommets adjacents

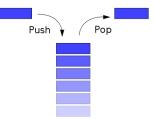
Tant que la pile n'est pas vide, répéter

- regarder le sommet v au dessus de la pile d'attente
- si v n'a pas de voisin inconnu
 - alors enlever v de la pile
 - sinon pour chaque voisin inconnu u de v ajouter u au dessus de la pile (devant v) et ajouter u à S

Définition d'une pile

Les primitives permettant de gérer une pile sont :

- Ajouter un sommet (toujours devant la file) (push (front))
- Enlever un sommet (toujours devant la file) (pop (front)); et,
- Vérifier si la file est vide (empty?).
- On peut aussi juste regarder le sommet devant la file sans l'enlever (CheckFront)

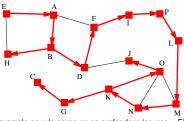


```
Algorithme 3: Parcours en profondeur
Données G un graphe et s un sommet de G
Variables locales S un ensemble /* zone connue */
F une pile
                                     /* la frontière */
u. v deux sommets
début
   initialisation
   add(s,S)
   pushFront (s,F)
   répéter
      \mathbf{v} := \mathsf{checkFront}(\mathbf{F})
      si il existe u ∉ S adjacent à v alors
         add(u,S) /* première visite de u */
         pushFront (u,F)
      sinon
        popFront(F) /* dernière visite de V */
      fin
   jusqu'à empty? (F)
fin
```

Propriétés d'un arbre de parcours

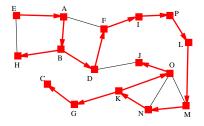
Remarque

Dans le cas d'un arbre de parcours, on part de la source. On a donc un arbre enraciné. Cela revient à considérer un arbre orienté par le sens du parcours depuis la source vers les feuilles. On peut donc parler d'ancêtre d'un sommet.



exemple pour le parcours en profondeur (source = E)

Propriétés d'un arbre de parcours en profondeur

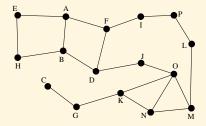


Observation

Tout arête de G est :

- (i) soit une arête de l'arbre,
- (ii) soit si ce n'est pas le cas, une arête entre deux sommets tels que l'un est l'ancêtre de l'autre (arc arrière).

Exercice



- Faire un parcours en profondeur différent de celui de l'exemple du cours en partant du sommet E.
- 2 Effectuez un parcours en profondeur depuis O, en choisissant toujours le plus petit sommet dans l'ordre alphabétique. Indiquez à chaque étape l'état de la pile et de l'arbre de parcours.

Temps de découverte des sommets

Problème

- Pour chaque sommet du graphe,
 - on voudrait savoir à quelle étape le sommet a été ajouté à la frontière; et,
 - à quelle étape il en est sorti (c'est-à-dire lorsqu'il a été ajouté à la zone explorée)
- On ajoute deux tableaux Début et Fin à notre algorithme pour stocker ces informations

```
Algorithme 4 : Parcours en profondeur + début et fin
```

Variables locales

```
Debut et Fin deux tableaux /* indexés par les sommets */
début
```

```
initialisation
x=0
add(s,S)
pushFront (s,F)
D\acute{e}but[s] := x
répéter
   x := x + 1
   v := checkFront (F)
   si il existe u ∉ S adjacent à v alors
      add(u,S)
                     /* première visite de u */
      pushFront (u,F)
      D\acute{e}but[u] := x
   sinon
      popFront(F) /* dernière visite de V */
      Fin[v] := x
   fin
jusqu'à empty? (F)
```

Ordre de la visite d'un sommet

Observation

On termine toujours l'exploration d'un sommet avant de terminer l'exploration de ses ancêtres. (terminer l'exploration d'un sommet= enlever ce sommet de la frontière pour le mettre dans la zone explorée)

Théorème (Début et Fin)

Si x est un voisin de y tel que x est visité pour la première fois avant y, alors y est visité pour la dernière fois avant que x ne soit visité pour la dernière fois.

$$E(x, y)$$
&Debut(x) < Debut(y) \Rightarrow Fin(y) < Fin(x)

Ordre topologique

Propriété

Soit \overrightarrow{G} un graphe orienté sans cycles dirigés. La relation binaire constituée des arcs de \overrightarrow{G} induit (par transitivité) un ordre partiel (strict) sur les sommets de \overrightarrow{G} .

Definition

Soit \overrightarrow{G} un graphe orienté sans cycles dirigés. Un ordre total < sur les sommets est dit topologique lorsqu'il est compatible avec l'ordre induit, i.e. pour tout arc (u, v) de \overrightarrow{G} , on a u < v.

Calcul d'un ordre topologique

Le problème

• Entrée : un graphe \overrightarrow{G} sans cycle

• Problème : calculer un ordre topologique

Remarque

Un tel graphe représente typiquement un problème d'ordonnancement de tâches : un sommet correspond à une tâche et un arc (u, v) indique la contrainte de précédence "la tâche u doit être terminée avant que la tâche v ne puisse commencer".

Solution

On prend les sommets dans l'ordre inverse de leur dernière visite dans un parcours en profondeur.

Concrètement

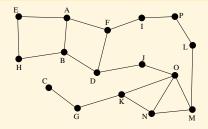
Méthode

- Ajouter un sommet source ayant un arc vers tous les autres (si nécessaire)
- Faire un parcours en profondeur en notant pour chaque sommet le temps de dernière visite
- Ce temps est la priorité du sommet dans le problème d'ordonnacement correspondant
- Plus la priorité est élevé, plus la tâche doit être exécutée tôt, donc l'ordre topologique est l'ordre décroissant des priorités

Attention

Il y a plusieurs parcours possibles en général et donc plusieurs ordres topologiques possibles.

Exercice



- Orientez les arcs du graphe selon l'ordre alphabétique. Justifiez que le graphe orienté obtenu \overrightarrow{G} est acyclique.
- 2 Ajouter un sommet qui précède tous les sommets de \overrightarrow{G} . Faire un parcours en profondeur du graphe orienté à partir de ce nouveau sommet.
- 3 En déduire un ordre topologique pour \overrightarrow{G} .

Exercice

Un dandy doit s'habiller. Pour être fin prêt, il doit mettre :

- son caleçon,
- ses chaussettes,
- ses chaussures,
- sa chemise,
- ses boutons de manchettes,
- sa ceinture,
- sa cravate,

- son épingle à cravate,
- son pantalon,
- son gilet,
- a montre de gousset,
- sa veste,
- sa pochette (son vilain petit mouchoir),
- et son chapeau.

Il ne peut toutefois pas mettre ses vêtements dans n'importe quel ordre :

- il doit mettre son caleçon avant son pantalon et ses chaussures;
- ses chaussures ne peuvent être enfilées avant les chaussettes ;
- la chemise doit être mise avant la ceinture, les boutons de manchettes, le chapeau et la cravate ;
- la cravate doit être nouée avant de pouvoir être fixée par l'épingle à cravate ;
- la cravate doit être nouée avant de fermer le gilet;
- la montre-à-gousset se porte sur le gilet
- la veste ne peut être mise avant la montre de gousset
- la ceinture et les chaussures ne peuvent pas être mises avant le pantalon.

Proposez-lui une solution.

FIN