Télescope et parabole

Partie A : Fonctionnement et propriétés du radiotélescope chinois FAST. 1) Découverte à l'aide de documents.

 $graphique is su \ de \ l'\'etude \ scientifique \ du \ projet \ disponible \ ici: \\ \frac{https://arxiv.org/ftp/arxiv/papers/1105/1105.3794.pdf}{l} \ (\ en \ anglais \ !\)$

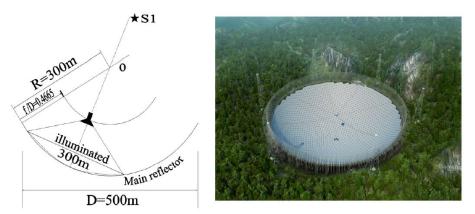


Figure 1: Left: FAST optical geometry, right: FAST 3-D model

Consulter les trois liens suivants

http://www.sciencesetavenir.fr/espace/vie-extraterrestre/la-chine-se-dote-d-un-radiotelescope-geant-pour-debusquer-les-extraterrestres_105150

https://fr.wikipedia.org/wiki/Radiot%C3%A9lescope_sph%C3%A9rique_de_cing_cents_m%C3%A8tres_d%27ouverture

http://radiotelescopeamateur.e-monsite.com/pages/a-sans-le-materiel/3-1.html

Pourquoi a-t-on nommé ce télescope FAST?

Quel est son diamètre ? Sa surface ? Son coût ?

Quelle propriété physique, en lien avec le rayon réfléchi par une surface, utilise un télescope ?

Quelle propriété mathématique en lien avec le foyer utilise un télescope parabolique ?

2) Modélisation et visualisation avec geogebra

a) Construire la parabole d'équation $y = \frac{1}{560}x^2$ sur l'intervalle [-150 ; 150] avec la commande

y=FONCTION[fonction, de , à]

- b) Placer un point A sur la parabole, puis la tangente en ce point, puis la perpendiculaire à la tangente en ce point. Vérifier la validité de votre figure en déplaçant le point A.
- c) Tracer une droite parallèle à l'axe des ordonnées passant par A, puis tracer sa droite symétrique (d) par rapport à la perpendiculaire à la tangente avec le bouton de symétrie. (attention à cliquer dans le bon ordre!).
- d) Activer la trace de la droite (d), déplacer le point A et conjecturer les coordonnées du foyer de la parabole.
- e) Demander à geogebra de construire directement le foyer de la parabole et consolider votre conjecture.

Partie B: Utilisation de cette propriété pour construire les tangentes à une parabole.

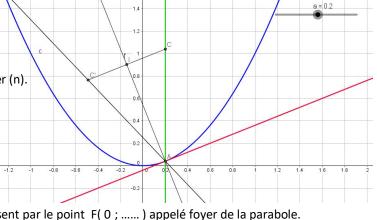
Pour simplifier, on utilisera la parabole (P) d'équation $y = x^2$.

1) Figure avec Geogebra et conjecture

Dans la zone de saisie, saisir $y = x^2$.

Placer un point A sur la parabole (P).

Tracer la parallèle (d) à (Oy) passant par A.

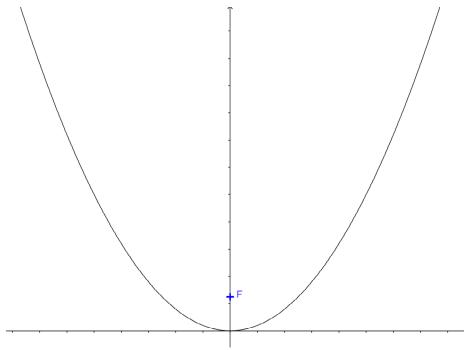

Tracer la tangente à la parabole P en A. La nommer (T).

Tracer la perpendiculaire à la tangente (T) en A. La nommer (n).

Tracer l'image de la droite (d) par rapport à la droite (n)

et la nommer (R).

Activer la trace de la droite (R)



Conjecture : (A compléter)

Il semble que tous les rayons réfléchis parallèle à (Oy) passent par le point F(0;) appelé foyer de la parabole.

2) Inversement, utilisation du foyer d'une parabole pour tracer ses tangentes

Supposons désormais que la propriété conjecturée précédemment soit connue ainsi que la position du foyer de la parabole. Détailler pas à pas une méthode qui permet de construire les tangentes à la parabole d'équation $y=x^2$ à l'aide de la règle et du compas seulement. Expérimenter la méthode avec geogebra sans utiliser le bouton « Tangente ».

Partie C: position du foyer d'une parabole.

Propriété : Soit le nombre positif p appelé « paramètre » de la parabole tel que y = $\frac{1}{2p}$ x², les coordonnées du foyer de la parabole sont (0, $\frac{p}{2}$).

- 1) Retrouver par le calcul les coordonnées du foyer de la parabole d'équation $y = x^2$.
- 2) Retrouver comment a été trouvée l'équation de la parabole de la partie A2) à partir des indications données dans le schéma de l'étude scientifique.

Partie D : Encore plus beau, le radiotélescope FAST est orientable.

- 1) Ouvrir le fichier geogebra envoyé par les ENT, puis avec l'aide des documents fournis partie A, expliquer brièvement le fonctionnement du télescope FAST pour réaliser cette prouesse technique.
- 2) En quoi ce mouvement permet-il de suivre la réception des ondes issues d'un astre lointain sur une longue durée ?